Water, Air, & Soil Pollution

, 225:1844 | Cite as

Assessment of Lead Contamination in Peatlands Using Field Portable XRF

  • E. L. ShuttleworthEmail author
  • M. G. Evans
  • S. M. Hutchinson
  • J. J. Rothwell


Ombrotrophic peatlands are highly sensitive to atmospheric heavy metal deposition. Previous attempts to quantify peatland lead pollution have been undertaken using the inventory approach. However, there can be significant within-site spatial heterogeneity in lead concentrations, highlighting the need for multiple samples to properly quantify lead storage. Field portable x-ray fluorescence (FPXRF) continues to gain acceptance in the study of contaminated soil, but has not thus far been used to assess peatland lead contamination. This study compares lead concentrations in surface peat samples from the South Pennines (UK) derived using (a) FPXRF in the field, (b) FPXRF in the lab on dried samples and (c) ICP-OES analysis. FPXRF field and lab data are directly comparable when field measurements are corrected for water content, both can be easily used to estimate acid extractable lead using regression equations. This study is a successful demonstration of FPXRF as a tool for a time- and cost-effective means of determining the lead content of contaminated peatlands, which will allow rapid landscape scale reconnaissance, core logging, surface surveys and sediment tracing.


FPXRF Organic matter High moisture content Pollution Heavy metals In situ measurement Data quality 



We thank The University of Manchester for the provision of a Graduate Teaching Studentship (to E. L. Shuttleworth). We are grateful to The National Trust and United Utilities for allowing work to be carried out at the study sites and to the University of Manchester and Moors for the Future who provided funding for analytical costs. Thanks also go to John Moore, Jonathan Yarwood and Laurie Cunliffe for their assistance in the lab and to Jason Dortch for his help with constructing the figures. Finally, we would like to thank the reviewers for their helpful comments and suggestions.


  1. Argyraki, A., Ramsey, M. H., & Potts, P. J. (1997). Evaluation of portable X-ray fluorescence instrumentation for in situ measurements of lead on contaminated land. Analyst, 122(8), 743–749.CrossRefGoogle Scholar
  2. Bernick, M. B., Kalnicky, D. J., Prince, G., & Singhvi, R. (1995). Results of field-portable X-ray-fluorescence analysis of metal contaminants in soil and sediment. Journal of Hazardous Materials, 43(1–2), 101–110.CrossRefGoogle Scholar
  3. Bindler, R., Klarqvist, M., Klaminder, J., & Forster, J. (2004). Does within-bog spatial variability of mercury and lead constrain reconstructions of absolute deposition rates from single peat records? The example of Store Mosse, Sweden. Global Biogeochemical Cycles, 18(3).Google Scholar
  4. Block, C. N., Shibata, T., Solo-Gabriele, H. M., & Townsend, T. G. (2007). Use of handheld X-ray fluorescence spectrometry units for identification of arsenic in treated wood. Environmental Pollution, 148(2), 627–633.CrossRefGoogle Scholar
  5. Bonn, A., Allott, T. E. H., Hubacek, K., & Stewart, J. (2009). Drivers of environmental change in uplands. Abingdon: Routledge.Google Scholar
  6. Bower, M. M. (1960). The erosion of blanket peat in the Southern Pennines. East Midlands Geogr, 2(13), 22–33.Google Scholar
  7. Bower, M. M. (1961). The distribution of erosion in blanket peat bogs in the Pennines. Transactions of the Institute of British Geographers, 29, 17–30.CrossRefGoogle Scholar
  8. Boyle, J. F. (2000). Rapid elemental analysis of sediment samples by isotope source XRF. Journal of Paleolimnology, 23(2), 213–221.CrossRefGoogle Scholar
  9. Brännvall, M.-L., Bindler, R., Emteryd, O., & Renberg, I. (2001). Four thousand years of atmospheric lead pollution in northern Europe: a summary from Swedish lake sediments. Journal of Paleolimnology, 25, 421–435.CrossRefGoogle Scholar
  10. Clark, S., Menrath, W., Chen, M., Roda, S., & Succop, P. (1999). Use of a field portable X-Ray fluorescence analyzer to determine the concentration of lead and other metals in soil samples. Annals of Agricultural and Environmental Medicine: AAEM, 6(1), 27–32.Google Scholar
  11. Dawson, J. J. C., Tetzlaff, D., Carey, A. M., Raab, A., Soulsby, C., Killham, K., & Meharg, A. A. (2010). Characterizing Pb mobilization from upland soils to streams using Pb-206/Pb-207 isotopic ratios. Environmental Science and Technology, 44(1), 243–249.CrossRefGoogle Scholar
  12. De Vleeschouwer, F., Gerard, L., Goormaghtigh, C., Mattielli, N., Le Roux, G., & Fagel, N. (2007). Atmospheric lead and heavy metal pollution records from a Belgian peat bog spanning the last two millenia: Human impact on a regional to global scale. Science of the Total Environment, 377(2–3), 282–295.CrossRefGoogle Scholar
  13. EAG (2007). ICP-OES and ICP-MS Detection Limit Guidance [Online]. Accessed 20 Feb 2013
  14. Ebdon, D. (1985). Statistics in geography: a practical approach—revised with 17 programs. Oxford: Blackwell.Google Scholar
  15. Farmer, J. G., Graham, M. C., Bacon, J. R., Dunn, S. M., Vinogradoff, S. I., & MacKenzie, A. B. (2005). Isotopic characterisation of the historical lead deposition record at Glensaugh, an organic-rich, upland catchment in rural NE Scotland. Science of the Total Environment, 346(1–3), 121–137.CrossRefGoogle Scholar
  16. Ge, L. Q., Lai, W. C., & Lin, Y. C. (2005). Influence of and correction for moisture in rocks, soils and sediments on in situ XRF analysis. X-Ray Spectrometry, 34(1), 28–34.CrossRefGoogle Scholar
  17. Hong, S. M., Candelone, J.-P., Patterson, C. C., & Boutron, C. F. (1994). Greenland ice evidence of hemispheric lead pollution 2 millennia ago by Greek and Roman civilizations. Science, 265, 1841–1843.CrossRefGoogle Scholar
  18. Hou, X. D., He, Y. H., & Jones, B. T. (2004). Recent advances in portable X-ray fluorescence spectrometry. Applied Spectroscopy Reviews, 39(1), 1–25.CrossRefGoogle Scholar
  19. Hürkamp, K., Raab, T., & Völkel, J. (2009a). Lead pollution of floodplain soils in a historic mining area—age, distribution and binding forms. Water, Air, and Soil Pollution, 201(1–4), 331–345.CrossRefGoogle Scholar
  20. Hürkamp, K., Raab, T., & Völkel, J. (2009b). Two and three-dimensional quantification of lead contamination in alluvial soils of a historic mining area using field portable X-ray fluorescence (FPXRF) analysis. Geomorphology, 110, 28–36.CrossRefGoogle Scholar
  21. Jones, J. M., & Hao, J. (1993). Ombrotrophic peat as a medium for historical monitoring of heavy-metal pollution. Environmental Geochemistry and Health, 15(2–3), 67–74.CrossRefGoogle Scholar
  22. Kalnicky, D. J., & Singhvi, R. (2001). Field portable XRF analysis of environmental samples. Journal of Hazardous Materials, 83(1–2), 93–122.CrossRefGoogle Scholar
  23. Kempter, H., & Frenzel, B. (2000). The impact of early mining and smelting on the local tropospheric aerosol detected in ombrotrophic peat bogs in the Harz, Germany. Water, Air, and Soil Pollution, 121(1–4), 93–108.CrossRefGoogle Scholar
  24. Kilbride, C., Poole, J., & Hutchings, T. R. (2006). A comparison of Cu, Pb, As, Cd, Zn, Fe, Ni and Mn determined by acid extraction/ICP-OES and ex situ field portable X-ray fluorescence analyses. Environmental Pollution, 143(1), 16–23.CrossRefGoogle Scholar
  25. Komarek, M., Chrastny, V., Ettler, V., & Tlustos, P. (2006). Evaluation of extraction/digestion techniques used to determine lead isotopic composition in forest soils. Analytical and Bioanalytical Chemistry, 385(6), 1109–1115.CrossRefGoogle Scholar
  26. Le Roux, G., & De Vleeschouwer, F. (2010/11). Preparation of peat samples for inorganic geochemistry used as palaeoenvironmental proxies. Mires and Peat, 7, 1–9.Google Scholar
  27. Lee, J. A., & Tallis, J. H. (1973). Regional and historical aspects of lead pollution in Britain. Nature, 245(5422), 216–218.CrossRefGoogle Scholar
  28. Livett, E. A., Lee, J. A., & Tallis, J. H. (1979). Lead, zinc and copper analyses of British blanket peats. Journal of Ecology, 67(3), 865–891.CrossRefGoogle Scholar
  29. Lowemark, L., Chen, H. F., Yang, T. N., Kylander, M., Yu, E. F., Hsu, Y. W., Lee, T. Q., Song, S. R., & Jarvis, S. (2011). Normalizing XRF-scanner data: a cautionary note on the interpretation of high-resolution records from organic-rich lakes. Journal of Asian Earth Sciences, 40(6), 1250–1256.CrossRefGoogle Scholar
  30. MacKenzie, A. B., Logan, E. M., Cook, G. T., & Pulford, I. D. (1998). Distributions, inventories and isotopic composition of lead in Pb-210-dated peat cores from contrasting biogeochemical environments: Implications for lead mobility. Science of the Total Environment, 223(1), 25–35.CrossRefGoogle Scholar
  31. Makinen, E., Korhonen, M., Viskari, E. L., Haapamaki, S., Jarvinen, M., & Lu, L. (2006). Comparison of XRF and FAAS methods in analysing CCA contaminated soils. Water, Air, and Soil Pollution, 171(1–4), 95–110.CrossRefGoogle Scholar
  32. Markert, B., & Thornton, I. (1990). Multielement analysis of an English peat bog soil. Water, Air, and Soil Pollution, 49(1–2), 113–123.CrossRefGoogle Scholar
  33. Martin Peinado, F., Morales Ruano, S., Bagur Gonzalez, M. G., & Estepa Molina, C. (2010). A rapid field procedure for screening trace elements in polluted soil using portable X-ray fluorescence (PXRF). Geoderma, 159(1–2), 76–82.CrossRefGoogle Scholar
  34. Marx, S. K., Kamber, B. S., McGowan, H. A., & Zawadzki, A. (2010). Atmospheric pollutants in alpine peat bogs record a detailed chronology of industrial and agricultural development on the Australian continent. Environmental Pollution, 158(5), 1615–1628.CrossRefGoogle Scholar
  35. Mihaljevic, M., Zuna, M., Ettler, V., Sebek, O., Strnad, L., & Golias, V. (2006). Lead fluxes, isotopic and concentration profiles in a peat deposit near a lead smelter (Pribram, Czech Republic). Science of the Total Environment, 372(1), 334–344.CrossRefGoogle Scholar
  36. Monna, F., Galop, D., Carozza, L., Tual, M., Beyrie, A., Marembert, F., Chateau, C., Dominik, J., & Grousset, F. (2004). Environmental impact of early Basque mining and smelting recorded in a high ash minerogenic peat deposit. Science of the Total Environment, 327(1–3), 197–214.CrossRefGoogle Scholar
  37. Murozumi, M., Chow, T. J., & Patterson, C. C. (1969). Chemical concentrations of pollutant lead aerosols, terrestrial dusts and sea salts in Greenland and Antarctic snow strata. Geochimica et Cosmochimica Acta, 33, 1247–1294.CrossRefGoogle Scholar
  38. Novak, M., Emmanuel, S., Vile, M. A., Erel, Y., Veron, A., Paces, T., Wieder, R. K., Vanecek, M., Stepanova, M., Brizova, E., & Hovorka, J. (2003). Origin of lead in eight central European peat bogs determined from isotope ratios, strengths, and operation times of regional pollution sources. Environmental Science and Technology, 37(3), 437–445.CrossRefGoogle Scholar
  39. Novak, M., Zemanova, L., Voldrichova, P., Stepanova, M., Adamova, M., Pacherova, P., Komarek, A., Krachler, M., & Prechova, E. (2011). Experimental evidence for mobility/immobility of metals in peat. Environmental Science and Technology, 45(17), 7180–7187.CrossRefGoogle Scholar
  40. Perkin Elmer (2011). Atomic spectroscopy: a guide to selecting the appropriate technique and system. Accessed 20 Feb 2013
  41. Raab, T,. Hürkamp, K., Völkel, J. (2005). Detection and quantification of heavy metal contamination in alluvial soils of historic mining areas by field portable X-ray fluorescence (FPXRF) analysis. In: Proceedings of International Conference on Problematic Soils 25-27 May 2005. Eastern Mediterranean University, Famagusta, N. CyprusGoogle Scholar
  42. Radu, T., & Diamond, D. (2009). Comparison of soil pollution concentrations determined using AAS and portable XRF techniques. Journal of Hazardous Materials, 171(1–3), 1168–1171.CrossRefGoogle Scholar
  43. Renberg, I., Wik-Persson, M., & Emteryd, O. (1994). Pre-industrial atmospheric lead contamination detected in Swedish lake sediments. Nature, 368, 323–326.CrossRefGoogle Scholar
  44. Renberg, I., Bindler, R., & Brännvall, M.-L. (2001). Using the historical atmospheric lead-deposition record as a chronological marker in sediment deposits in Europe. The Holocene, 11(5), 511–516.CrossRefGoogle Scholar
  45. Ridings, M., Shorter, A. J., & Smith, J. B. (2000). Strategies for the investigation of contaminated sites using field portable X-ray fluorescence (FPXRF) techniques. Communications in Soil Science and Plant Analysis, 31(11–14), 1785–1790.CrossRefGoogle Scholar
  46. Rothwell, J. J., Robinson, S. G., Evans, M. G., Yang, J., & Allott, T. E. H. (2005). Heavy metal release by peat erosion in the Peak District, southern Pennines, UK. Hydrological Processes, 19(15), 2973–2989.CrossRefGoogle Scholar
  47. Rothwell, J. J., Evans, M. G., Lindsay, J. B., & Allott, T. E. H. (2007a). Scale-dependent spatial variability in peatland lead pollution in the southern Pennines, UK. Environmental Pollution, 145(1), 111–120.CrossRefGoogle Scholar
  48. Rothwell, J. J., Evans, M. G., & Allott, T. E. H. (2007b). Lead contamination of fluvial sediments in an eroding blanket peat catchment. Applied Geochemistry, 22(2), 446–459.CrossRefGoogle Scholar
  49. Rothwell, J. J., Evans, M. G., Daniels, S. A., & Allott, T. E. H. (2008). Peat soils as a source of lead contamination to upland fluvial systems. Environmental Pollution, 153(3), 582–589.CrossRefGoogle Scholar
  50. Rothwell, J. J., Taylor, K. G., Chenery, S. R. N., Cundy, A. B., Evans, M. G., & Allottt, T. E. H. (2010a). Storage and behavior of As, Sb, Pb, and Cu in ombrotrophic peat bogs under contrasting water table conditions. Environmental Science and Technology, 44(22), 8497–8502.CrossRefGoogle Scholar
  51. Rothwell, J. J., Lindsay, J. B., Evans, M. G., & Allott, T. E. H. (2010b). Modelling suspended sediment lead concentrations in contaminated peatland catchments using digital terrain analysis. Ecological Engineering, 36(5), 623–630.CrossRefGoogle Scholar
  52. Shefsky, S. (1997). Comparing field portable x-ray fluorescence (XRF) to laboratory analysis of heavy metals in soil. Accessed 14 Jan 2013
  53. Shotbolt, L., Hutchinson, S., & Thomas, A. (2006). Sediment stratigraphy and heavy metal fluxes to reservoirs in the Southern Pennine Uplands, UK. Journal of Paleolimnology, 35(2), 305–322.CrossRefGoogle Scholar
  54. Shotyk, W., Weiss, D., Appleby, P. G., Cheburkin, A. K., Frei, R., Gloor, M., Kramers, J. D., Reese, S., & Van der Knaap, W. O. (1998). History of atmospheric lead deposition since 12,370 C-14 yr BP from a peat bog, Jura Mountains, Switzerland. Science, 281(5383), 1635–1640.CrossRefGoogle Scholar
  55. Shotyk, W., Blaser, P., Grunig, A., & Cheburkin, A. K. (2000). A new approach for quantifying cumulative, anthropogenic, atmospheric lead deposition using peal cores from bogs: Pb in eight Swiss peat bog profiles. Science of the Total Environment, 249(1–3), 281–295.CrossRefGoogle Scholar
  56. Shotyk, W., Goodsite, M. E., Roos-Barraclough, F., Frei, R., Heinemeier, J., Asmund, G., Lohse, C., & Hansen, T. S. (2003). Anthropogenic contributions to atmospheric Hg, Pb and As accumulation recorded by peat cores from southern Greenland and Denmark dated using the 14C “bomb pulse curve”. Geochimica et Cosmochimica Acta, 67(21), 3991–4011.CrossRefGoogle Scholar
  57. Shuttleworth, E. L., Evans, M. G., Rothwell, J. J., & Hutchinson, S. M. (2012). Impacts of erosion and restoration on POC flux and pollutant mobilisation in the peatlands of the Peak District National Park, UK (EGU General Assembly 2012). Vienna: Austria.Google Scholar
  58. Smith, E. J., Hughes, S., Lawlor, A. J., Lofts, S., Simon, B. M., Stevens, P. A., Stidson, R. T., Tipping, E., & Vincent, C. D. (2005). Potentially toxic metals in ombrotrophic peat along a 400 km English-Scottish transect. Environmental Pollution, 136(1), 11–18.CrossRefGoogle Scholar
  59. Solo-Gabriele, H. M., Townsend, T. G., Hahn, D. W., Moskal, T. M., Hosein, N., Jambeck, J., & Jacobi, G. (2004). Evaluation of XRF and LIBS technologies for on-line sorting of CCA-treated wood waste. Waste Management, 24(4), 413–424.CrossRefGoogle Scholar
  60. Sterling, D. A., Lewis, R. D., Luke, D. A., & Shadel, B. N. (2000). A portable x-ray fluorescence instrument for analyzing dust wipe samples for lead: evaluation with field samples. Environmental Research, 83(2), 174–179.CrossRefGoogle Scholar
  61. Stevenson, F. J. (1976). Stability-constants of Cu2+, Pb2+, and Cd2+ complexes with humic acids. Soil Science Society of America Journal, 40(5), 665–672.CrossRefGoogle Scholar
  62. Sturgeon, R. E. (2000). Current practice and recent developments in analytical methodology for trace element analysis of soils, plants, and water. Communications in Soil Science and Plant Analysis, 31(11–14), 1479–1512.CrossRefGoogle Scholar
  63. Tallis, J. H. (1985). Mass movement and erosion of a southern Pennine blanket peat. Journal of Ecology, 73(1), 283–315.CrossRefGoogle Scholar
  64. Teutsch, N., Erel, Y., Halicz, L., & Banin, A. (2001). Distribution of natural and anthropogenic lead in Mediterranean soils. Geochimica et Cosmochimica Acta, 65(17), 2853–2864.CrossRefGoogle Scholar
  65. Tipping, E., Smith, E. J., Lawlor, A. J., Hughes, S., & Stevens, P. A. (2003). Predicting the release of metals from ombrotrophic peat due to drought-induced acidification. Environmental Pollution, 123(2), 239–253.CrossRefGoogle Scholar
  66. Tyler, G., Pahlsson, A. M. B., Bengtsson, G., Baath, E., & Tranvik, L. (1989). Heavy-metal ecology of terrestrial plants, microorganisms and invertebrates—a review. Water, Air, and Soil Pollution, 47(3–4), 189–215.CrossRefGoogle Scholar
  67. USEPA (1998). Environmental technology verification report. Field portable X-ray fluorescence analyzer. Metorex X-MET 920-P and 940, EPA/600/R-97/146.: United States Environmental Protection AgencyGoogle Scholar
  68. USEPA (2008). Basic XRF concepts. Advanced design application, data analysis for field-portable XRF. United States Environmental Protection AgencyGoogle Scholar
  69. Van Asselen, S., & Roosendaal, C. (2009). A new method for determining the bulk density of uncompacted peat from field settings. Journal of Sedimentary Research, 79, 918–922.Google Scholar
  70. Van Cott, R. J., McDonald, B. J., & Seelos, A. G. (1999). Standard soil sample preparation error and comparison of portable XRF to laboratory AA analytical results. Nuclear Instruments and Methods in Physics Research Section a-Accelerators Spectrometers Detectors and Associated Equipment, 422(1–3), 801–804.Google Scholar
  71. Vile, M. A., Wieder, R. K., & Novak, M. (1999). Mobility of Pb in Sphagnum-derived peat. Biogeochemistry, 45(1), 35–52.Google Scholar
  72. Vile, M. A., Wieder, R. K., & Novak, M. (2000). 200 years of Pb deposition throughout the Czech Republic: patterns and sources. Environmental Science and Technology, 34(1), 12–21.CrossRefGoogle Scholar
  73. Weiss, D., Shotyk, W., Appleby, P. G., Kramers, I. D., & Cheburkin, A. K. (1999). Atmospheric Pb deposition since the industrial revolution recorded by five Swiss peat profiles: enrichment factors, fluxes, isotopic composition, and sources. Environmental Science and Technology, 33(9), 1340–1352.CrossRefGoogle Scholar
  74. Yafa, C., & Farmer, J. G. (2006). A comparative study of acid-extractable and total digestion methods for the determination of inorganic elements in peat material by inductively coupled plasma-optical emission spectrometry. Analytica Chimica Acta, 557(1–2), 296–303.CrossRefGoogle Scholar
  75. Zheng, J., Shotyk, W., Krachler, M., & Fisher, D. (2007). 15,800 years of atmospheric lead deposition on Devon Ice Cap, Nunavut, Canada: natural and anthropogenic enrichments, isotopic composition, and predominant sources. Global Biogeochemical Cycles, 21, GB2027.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • E. L. Shuttleworth
    • 1
    Email author
  • M. G. Evans
    • 1
  • S. M. Hutchinson
    • 2
  • J. J. Rothwell
    • 1
  1. 1.Upland Environments Research Unit, School of Environment, Education and DevelopmentUniversity of ManchesterManchesterUK
  2. 2.School of Environment and Life SciencesUniversity of SalfordSalfordUK

Personalised recommendations