Water, Air, & Soil Pollution

, 225:1841 | Cite as

Column Tests to Characterise the Hydrogeochemical Response of Pre-oxidised Acid-Generating Tailings with a Monolayer Cover

  • Thomas PabstEmail author
  • Michel Aubertin
  • Bruno Bussière
  • John Molson


The study presented here focuses on the use of monolayer covers for reclaiming two acid-generating tailings sites located in Quebec, Canada. One of these covers is made of non-acid-generating tailings, and the other is made of a silty sand (till). The covers are part of the closure plans that aim at controlling acid mine (rock) drainage at these two sites. Reactive tailings and cover material samples were collected in situ and characterised in the laboratory. Large-size columns (230 cm in height) were set up to evaluate the hydrogeological and geochemical response of the tailings and cover systems. Monthly wetting and drying cycles were repeated over nearly 2 years to simulate climatic conditions. Water content, suction, and oxygen concentrations were monitored, and chemical analyses were performed on the leachate collected at the base during each cycle to follow the evolution of water quality, in terms of pH and concentrations of sulfates and metals. In addition, small columns (45 cm in height) were also set up, with a similar testing program, to assess the hydrogeochemical behaviour of exposed tailings. The specific objective of this experimental program was to evaluate the hydrogeological and geochemical behaviour of the tailings-cover systems under controlled conditions. The results indicate that, for the imposed conditions, the monolayer covers became significantly desaturated, thus insufficiently limiting the oxygen diffusion flux. Consequently, these covers do not efficiently prevent sulfide oxidation within the tailings. The implications of these results are also discussed.


Acid-generating tailings Monolayer cover Column tests Elevated water table 



This research was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) and by the partners of the Industrial NSERC Polytechnique-UQAT Chair in Environment and Mine Wastes Management.

The authors would like to thank Manon Leduc at Polytechnique Montréal and Nil Gaudet at UQAT for their help in the laboratory and field work.


  1. Aachib, M. (1997). Etude en laboratoire de la performance des barrières de recouvrement constituées de rejets miniers pour limiter le DMA. Doctoral Thesis, Département de Génie Civil Géologique et des Mines, Ecole Polytechnique de Montréal, QC, 298p.Google Scholar
  2. Aachib, M., Mbonimpa, M., & Aubertin, M. (2004). Measurement and prediction of the oxygen diffusion coefficient in the unsaturated media, with applications to soil covers. Water Air Soil Pollut, 156, 163–193.CrossRefGoogle Scholar
  3. Appelo, C. A. J., & Postma, D. (1994). Geochemistry, groundwater and pollution. Rotterdam, NL: Balkema Publishers.Google Scholar
  4. ASTM D2434-68. (2000). Standard test method for permeability of granular soils (constant head). ASTM International.Google Scholar
  5. ASTM D3152-72. (2000). Standard test method for capillary-moisture relationships for fine-textured soils by pressure-membrane apparatus (Withdrawn (2007)). ASTM International.Google Scholar
  6. ASTM D422. (2000). Standard test method for particle-size analysis of soils. ASTM International.Google Scholar
  7. ASTM D5084-90. (1997). Standard test method for measurement of hydraulic conductivity of saturated porous materials using a flexible wall permeameter. ASTM International.Google Scholar
  8. ASTM D5856-95. (2000). Standard test method for measurement of hydraulic conductivity of porous material using a rigid-wall, compaction-mold permeameter. ASTM International.Google Scholar
  9. ASTM D5887. (2000). Standard test method for measurement of index flux through saturated geosynthetic clay liner specimens using a flexible wall permeameter. ASTM International.Google Scholar
  10. ASTM D854. (2000). Standard test methods for specific gravity of soil solids by water pycnometer. ASTM International.Google Scholar
  11. Aubertin, M., & Mbonimpa, M. (2001). Diffusion of oxygen through a pulp and paper residue barrier: Discussion. Canadian Geotechnical Journal, 38, 658–660.CrossRefGoogle Scholar
  12. Aubertin, M., Chapuis, R. P., Aachib, M., Bussière, B., Ricard, J. F., & Tremblay, L. (1995). Evaluation en laboratoire de barrières sèches construites à partir de résidus miniers. Ecole Polytechnique de Montréal, NEDEM/MEND Projet 2.22.2a.Google Scholar
  13. Aubertin, M., Bussière, B., Aachib, M., Chapuis, R. P., & Crespo, J. R. (1996). Une modélisation numérique des écoulements non saturés dans des couvertures multicouches en sols. Hydrogéologie, 1, 3–13.Google Scholar
  14. Aubertin, M., Bussière, B., Monzon, M., Joanes, A. M., Gagnon, D. Barbera, J. M., Aachib, M., Bédard, C., Chapuis, R. P., & Bernier, L. (1999). Etude sur les barrières sèches construites à partir des résidus miniers. Phase II, Essais en place. Rapport de Recherche, Projet CDT P1899. NEDEM/MEND 2.22.2c.Google Scholar
  15. Aubertin, M., Bussière, B., Bernier, L. (2002). Environnement et gestion des rejets miniers. Presses Internationales Polytechniques, Montréal.Google Scholar
  16. Aubertin, M., Mbonimpa, M., Bussière, B., & Chapuis, R. P. (2003). A model to predict the water retention curve from basic geotechnical properties. Canadian Geotechnical Journal, 40(6), 1104–1122.CrossRefGoogle Scholar
  17. Benzaazoua, M., Bussière, B., Dagenais, A. M., & Archambault, M. (2004). Kinetics tests comparison and interpretation for prediction of the Joutel tailings acid generation potential. Environ Geol, 46(8), 1086–1101.CrossRefGoogle Scholar
  18. BNQ 2560-040. (2002). Travaux de génie civil–Granulats. Bureau de normalisation du Québec.Google Scholar
  19. Bussière, B., Nicholson, R., Aubertin, M., & Benzaazoua, M. (1997). Evaluation of the effectiveness of covers built with desulfurized tailings for preventing acid mine drainage. In Proceedings, the 50th Canadian Geotechnical Conference. Canadian Geotechnical Society, Ottawa, ON, 1, 17-25.Google Scholar
  20. Bussière, B., Aubertin, M., & Chapuis, R. P. (2003). The behavior of inclined covers used as oxygen barriers. Canadian Geotechnical Journal, 40(3), 512–535.CrossRefGoogle Scholar
  21. Bussière, B., Benzaazoua, M., Aubertin, M., & Mbonimpa, M. (2004). A laboratory study of covers made of low-sulfide tailings to prevent acid mine drainage. Environ Geol, 45(5), 609–622.CrossRefGoogle Scholar
  22. Bussière, B., Maqsoud, A., Aubertin, M., Martschuk, J., McMullen, J., & Julien, M. (2006). Performance of the oxygen limiting cover at the LTA site, Malartic, Quebec. CIM Bulletin, 1(6), 1–11.Google Scholar
  23. Collin, M. (1987). Mathematical modeling of water and oxygen ransport in layered soil covers for deposits of pyritic mine tailings. Licenciate Treatise. Royal Institute of Technology, Department of Chemical Engineering, Stockholm, Suède.Google Scholar
  24. Cosset, G., & Aubertin, M. (2010). Physical and numerical modelling of a monolayer cover placed on reactive tailings. Proceedings of 63rd Canadian Geotechnical Conference & 1st Joint CGS/CNC-IPA Permafrost Specialty Conference, 12–16 September 2010, Calgary, AB, pp. 1197-1204.Google Scholar
  25. Dagenais, A. M. (2005). Techniques de contrôle du drainage minier acide basées sur les effets capillaires. Thèse de Doctorat, Département CGM, Ecole Polytechnique de Montréal.Google Scholar
  26. Dagenais, A. M., Aubertin, M, & Bussière, B. (2006). Parametric study on the water content profiles and oxidation rates in nearly saturated tailings above the water table. In Proceedings of the 7th ICARD, St-Louis. pp.Google Scholar
  27. Demers, I., Bussière, B., Aachib, M., & Aubertin, M. (2011) Repeatability evaluation of instrumented column tests in cover efficiency evaluation for the prevention of acid mine drainage, Water Air Soil Pollut., Nov. 2010: 1-16.Google Scholar
  28. Demers, I., Bussière, B., Rousselle, M., Aubertin, M., Pabst, T. (2013). Laboratory evaluation of reclamation scenarios for the spillage areas of the abandoned Manitou mine site using Goldex tailings. Proc. World Mining Congress, Montreal, CIM (to be published).Google Scholar
  29. Gleisner, M., Herbert, R. B., & Frogner Kockum, P. C. (2006). Pyrite oxidation by A. ferrooxidans at various concentrations of dissolved oxygen. Chem Geol, 225, 16–29.CrossRefGoogle Scholar
  30. Gosselin, M., Mbonimpa, M. & Aubertin, M. (2012) Evaluating the oxygen reaction rate coefficient of sulfidic tailings using laboratory and field tests. In Proceedings of 9th International Conference on Acid Rock Drainage, Ottawa, ON.Google Scholar
  31. Hakkou, R., Benzaazoua, M., & Bussière, B. (2008). Acid mine drainage potential in the Kettara abandoned mine (Morocco), part 2, mine waste geochemical behavior. Mine Water and Environment, 27(3), 160–170.CrossRefGoogle Scholar
  32. Jambor, J. L. (2000). The relationship of mineralogy to acid- and neutralization-potential values in ARD. In Environmental Mineralogy, Microbial Interactions, Anthropogenic Influences, Contaminated Land and Waste Management. The Mineralogical Society Series, 9, 141–160.Google Scholar
  33. Klein, C., & Hurlbut, C. S. (1999). Manual of mineralogy, 21st edition. John Wiley & Sons.Google Scholar
  34. Lawrence, R. W., & Wang, Y. (1997). Determination of neutralization potential in the prediction of acid rock drainage. In Proceedings of the 4th Int. Conf. On Acid Rock Drainage. MEND, NRC, Ottawa, ON, 1, 451-464.Google Scholar
  35. Mbonimpa, M., Aubertin, M., Aachib, M., & Bussière, B. (2003). Diffusion and consumption of oxygen in unsaturated cover materials. Canadian Geotechnical Journal, 40(5), 916–932.CrossRefGoogle Scholar
  36. MEND. (1996). Review of use of an elevated water table as a method to control and reduce acidic drainage from tailings, Mine Environment Neutral Drainage, Report 2.17.1, Ministry of Natural Resources, Canada.Google Scholar
  37. Nicholson, R. V. (1994). Chapter 6, Iron-sulfide oxidation mechanisms, laboratory studies. In Short Course Handbook on Environmental Geochemistry of Sulfide Mine-Wastes. Edited by D.W. Blowes and J.L. Jambor, 164-183.Google Scholar
  38. Nicholson, R. V., Gillham, R. W., Cherry, J. A., & Reardon, E. J. (1989). Reduction of acid generation in mine tailings through the use of moisture-retaining layers as oxygen barriers. Canadian Geotechnical Journal, 26, 1–8.CrossRefGoogle Scholar
  39. Nordstrom, D. K., & Southam, G. (1997). Geomicrobiology of sulfide mineral oxidation. In Geomicrobiology, interactions between microbes and minerals. Rev. Mineral, 35, 361–385.Google Scholar
  40. Nordstrom, D. K., & Alpers, C. N. (1999). Geochemistry of acid mine waters. In The Environmental Geochemistry of Mineral Deposits, Part A, Processes, Techniques, & Health Issues. Reviews in Economic Geology, 6A, 133–157.Google Scholar
  41. Ouangrawa, M. (2007). Etude expérimentale et analyse numérique des facteurs qui influencent le comportement hydro-géochimique de résidus miniers sulfureux partiellement submergés. Thèse de doctorat, Département des Génies Civil, Géologique et des Mines, École Polytechnique de Montréal. 428p.Google Scholar
  42. Ouangrawa, M., Molson, J., Aubertin, Zagury, G., & Bussière, B. (2006). The effect of water table elevation on acid mine drainage from reactive tailings, a laboratory and numerical modelling study. In Proceedings of the 7th International Conference on Acid Rock Drainage (ICARD), 1473-1482, March 26-30, (2006), St. Louis, MI.Google Scholar
  43. Ouangrawa, M., Molson, J., Aubertin, M., Bussière, B., & Zagury, G. J. (2009). Reactive transport modelling of mine tailings columns with capillarity-induced high water saturation for preventing sulfide oxidation. Appl Geochem, 24, 1312–1323.CrossRefGoogle Scholar
  44. Ouangrawa, M., Aubertin, M., Molson, J., Bussière, B., & Zagury, G. J. (2010). Preventing acid mine drainage with an elevated water table: Long-term column experiments and parameter analysis. Water Air Soil Pollut, 213, 437–458.CrossRefGoogle Scholar
  45. Pabst, T. (2011) Etude expérimentale et numérique du comportement hydro-géochimique de recouvrements placés sur des résidus sulfureux partiellement oxydés. Ph.D. Thesis, Mineral Engineering, Ecole Polytechnique de Montréal, 582p.Google Scholar
  46. Pabst, T., Molson, J., Aubertin, M. & Bussière, B. (2011) Physical and geochemical transport modelling of pre-oxidised acid-generating tailings with a monolayer cover. In Proceedings of the 2011 Mine Closure Conference, Lake Louise, AB, September 18-21, 2011.Google Scholar
  47. Plante, B. (2010). Prédiction du drainage neutre contaminé en nickel: Cas de la mine Tio. Ph.D. Thesis, Université du Québec en Abitibi-Témiscamingue, Rouyn-Noranda, QC.Google Scholar
  48. van Genuchten, M. T. H. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44, 892–898.CrossRefGoogle Scholar
  49. van Genuchten, M. Th., Leij, F. J., & Yates, S. R. (1991). The RETC code for quantifying the hydraulic functions of unsaturated soils.Google Scholar
  50. van Genuchten, M. T. H., & Nielsen, D. R. (1985). On describing and predicting the hydraulic properties of unsaturated soils. Annals of Geophysics, 3, 615–628.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Thomas Pabst
    • 1
    • 2
    Email author
  • Michel Aubertin
    • 1
    • 3
  • Bruno Bussière
    • 3
    • 4
  • John Molson
    • 5
  1. 1.Department of Civil, Geological, and Mining EngineeringEcole Polytechnique de MontréalMontréalCanada
  2. 2.Norwegian Geotechnical Institute (NGI)OsloNorway
  3. 3.Research Institute on Mines and EnvironmentMontréalCanada
  4. 4.Department of Applied SciencesUniversité du Québec en Abitibi-TémiscamingueRouyn-NorandaCanada
  5. 5.Department og Geology and Geological EngineeringUniversité LavalQuébecCanada

Personalised recommendations