Water, Air, & Soil Pollution

, 224:1763 | Cite as

The Increased Contribution of Atmospheric Nitrogen Deposition to Nitrogen Cycling in a Rural Forested Area of Kyushu, Japan

  • Masaaki ChiwaEmail author
  • Tsutomu Enoki
  • Naoko Higashi
  • Tomo’omi Kumagai
  • Kyoichi Otsuki


Japan has been receiving increasing levels of atmospheric nitrogenous pollutants from the East Asian continent over the last few decades, so it is critical to evaluate the impact of this increased atmospheric nitrogen (N) deposition on N cycling even in rural forests. This study evaluated the contribution of the current level of atmospheric N deposition to N cycling in a rural forested area. Bulk precipitation and stream water were collected during 2007–2011 at the Shiiba Research Forest (SRF) located in the central Kyushu mountain range of southern Japan. Litterfall was also collected to investigate the contribution of atmospheric N deposition to total N input (litterfall N + atmospheric N deposition). The results showed that atmospheric depositions of both nitrate (NO3 ) and ammonium (NH4 +) were a few times higher during 2009–2011 than in 1991. This could be the result of additional N deposition from the increased long-range transport of nitrogenous pollutants from the East Asian continent. The current level of annual N deposition (9.7 kg N ha−1 year−1) at the SRF was comparable with that at many urban sites and was close to the reported threshold values causing N saturation in forest ecosystems. Although current atmospheric N deposition was an important component (23 %) of total N input (43 kg N ha−1 year−1) at the SRF, the concentrations of NO3 in stream water were consistently low (<10 μmol L−1). These results indicate that atmospheric N deposition is currently largely incorporated into forest ecosystems without excess N export from forested watersheds.


Atmospheric N deposition Rural forest N cycling Long-range transport East Asia 



We thank the staff at the Shiiba Research Forest, Kyushu University Forest for the litterfall and stream water collection. The cost of publication was supported in part by the Research Grant for Young Investigators of the Faculty of Agriculture, Kyushu University. This study was also financially supported by the Research Grant for Long Term Ecological Research for monitoring water quality in Kyushu University Forest.


  1. Aber, J. D., Nadelhoffer, K. J., Steudler, P., & Melillo, J. M. (1989). Nitrogen saturation in northern forest ecosystems. Bioscience, 39, 378–386.CrossRefGoogle Scholar
  2. Aber, J. D., Goodale, C. L., Ollinger, S. V., Smith, M. L., Magill, A. H., Martin, M. E., Hallett, R. A., & Stoddard, J. L. (2003). Is nitrogen deposition altering the nitrogen status of northeastern forests? Bioscience, 53, 375–389.CrossRefGoogle Scholar
  3. Akimoto, H. (2003). Global air quality and pollution. Science, 302, 1716–1719.CrossRefGoogle Scholar
  4. Campbell, J. L., Hornbeck, J. W., Mitchell, M. J., Adams, M. B., Castro, M. S., Driscoll, C. T., Kahl, J. S., Kochenderfer, J. N., Likens, G. E., Lynch, J. A., Murdoch, P. S., Nelson, S. J., & Shanley, J. B. (2004). Input–output budgets of inorganic nitrogen for 24 forest watersheds in the northeastern United States: a review. Water, Air, and Soil Pollution, 151, 373–396.CrossRefGoogle Scholar
  5. Chiwa, M. (2010). Characteristics of atmospheric nitrogen and sulfur containing compounds in an inland suburban-forested site in northern Kyushu, western Japan. Atmospheric Research, 96, 531–543.CrossRefGoogle Scholar
  6. Chiwa, M., Maruno, R., Ide, J., Miyano, T., Higashi, N., & Otsuki, K. (2010). Role of stormflow in reducing N retention in a suburban forested watershed, western Japan. Journal of Geophysical Research – Biogeosciences, 115, G02004. doi: 10.1029/2009JG000944.CrossRefGoogle Scholar
  7. Chiwa, M., Onikura, N., Ide, J., & Kume, A. (2012). Impact of N-saturated upland forests on downstream N pollution in the Tatara River Basin, Japan. Ecosystems, 15, 230–241.CrossRefGoogle Scholar
  8. Dise, N., & Wright, R. F. (1995). Nitrogen leaching from European forests in relation to nitrogen deposition. Forest Ecology and Management, 71, 153–161.CrossRefGoogle Scholar
  9. Emmett, B. (2007). Nitrogen saturation of terrestrial ecosystems: some recent findings and their implications for our conceptual framework. Water Air, and Soil Pollution Focus, 7, 99–109.CrossRefGoogle Scholar
  10. Enoki, T., Kawaguchi, H., & Iwatsubo, G. (1997). Nutrient-uptake and nutrient-use efficiency of Pinus thunbergii Parl. along a topographical gradient of soil nutrient availability. Ecological Research, 12, 191–199.CrossRefGoogle Scholar
  11. Fujimaki, R., Sakai, A., & Kaneko, N. (2009). Ecological risks in anthropogenic disturbance of nitrogen cycles in natural terrestrial ecosystems. Ecological Research, 24, 955–964.CrossRefGoogle Scholar
  12. Fukushima, K., & Tokuchi, N. (2009). Factors controlling the acid-neutralizing capacity of Japanese cedar forest watersheds in stands of various ages and topographic characteristics. Hydrological Processes, 23, 259–271.CrossRefGoogle Scholar
  13. Fukushima, K., Tateno, R., & Tokuchi, N. (2011). Soil nitrogen dynamics during stand development after clear-cutting of Japanese cedar (Cryptomeria japonica) plantations. Journal of Forest Research, 16, 394–404.CrossRefGoogle Scholar
  14. Ham, Y. S., Kobori, H., Kang, J. H., & Kim, J. H. (2010). Ammonium nitrogen deposition as a dominant source of nitrogen in a forested watershed experiencing acid rain in central Japan. Water, Air, and Soil Pollution, 212, 337–344.CrossRefGoogle Scholar
  15. Hansen, K., Vesterdal, L., Schmidt, I. K., Gundersen, P., Sevel, L., Bastrup-Birk, A., Pedersen, L. B., & Bille-Hansen, J. (2009). Litterfall and nutrient return in five tree species in a common garden experiment. Forest Ecology and Management, 257, 2133–2144.CrossRefGoogle Scholar
  16. Huang, X., Song, Y., Li, M., Li, J., Huo, Q., Cai, X., Zhu, T., Hu, M., & Zhang, H. (2012). A high-resolution ammonia emission inventory in China. Global Biogeochemical Cycles, 26, GB1030. doi: 10.1029/2011GB004161.Google Scholar
  17. Inokura, Y., Yoshimuara, K., Kubota, K., Nakao, T., & Aragami, K. (1994). pH and dissolved components of rainfall and stemflow in mountain regions of Kyushu. Bulletin of the Kyushu University Forests, 71, 1–12 (in Japanese with English summary).Google Scholar
  18. Kawahara, T. (1971). The return of nutrients with litter fall in the forest ecosystems (II) the amount of organic matter and nutrients. Journal of the Japanese Forest Research, 52, 231–238 (in Japanese with English summary).Google Scholar
  19. Kuribayashi, M., Ohara, T., Morino, Y., Uno, I., Kurokawa, J., & Hara, H. (2012). Long-term trends of sulfur deposition in East Asia during 1981–2005. Atmospheric Environment, 59, 461–475.CrossRefGoogle Scholar
  20. Kurokawa, J., Ohara, T., Morikawa, T., Hanayama, S., Greet, J.-M., Fukui, T., Kawashima, K., & Akimoto, H. (2013). Emissions of air pollutants and greenhouse gases over Asian regions during 2000–2008: Regional Emission inventory in ASia (REAS) version 2. Atmospheric Chemistry and Physics Discussions, 13, 10049–10123.CrossRefGoogle Scholar
  21. Likens, G. E., & Bormann, F. H. (1979). Biogeochemistry of a forested ecosystem. New York: Springer.Google Scholar
  22. Magnani, F., Mencuccini, M., Borghetti, M., Berbigier, P., Berninger, F., Delzon, S., Grelle, A., Hari, P., Jarvis, P. G., Kolari, P., Kowalski, A. S., Lankreijer, H., Law, B. E., Lindroth, A., Loustau, D., Manca, G., Moncrieff, J. B., Rayment, M., Tedeschi, V., Valentini, R., & Grace, J. (2007). The human footprint in the carbon cycle of temperate and boreal forests. Nature, 447, 848–850.CrossRefGoogle Scholar
  23. Mitchell, M. J., Iwatsubo, G., Ohrui, K., & Nakagawa, Y. (1997). Nitrogen saturation in Japanese forests: an evaluation. Forest Ecology and Management, 97, 39–51.CrossRefGoogle Scholar
  24. Morino, Y., Ohara, T., Kurokawa, J., Kuribayashi, M., Uno, I., & Hara, H. (2011). Temporal variations of nitrogen wet deposition across Japan from 1989 to 2008. Journal of Geophysical Research-Atmosphere, 116, D06307. doi: 10.1029/2010JD015205.CrossRefGoogle Scholar
  25. Murata, I., Saruki, S., Kubota, K., Inoue, S., Tashiro, N., Enoki, T., Utsumi, Y., & Inoue, S. (2009). Effects of sika deer (Cervus nippon) and dwarf bamboo (Sasamorpha borealis) on seedling emergence and survival in cool-temperate mixed forests in the Kyushu Mountains. Journal of Forest Research, 14, 296–301.CrossRefGoogle Scholar
  26. Nagafuchi, O., Mukai, H., & Koga, M. (2001). Black acidic rime ice in the remote island of Yakushima, a world natural heritage area. Water, Air, and Soil Pollution, 130, 1565–1570.CrossRefGoogle Scholar
  27. Ohara, T., Akimoto, H., Kurokawa, J., Horii, N., Yamaji, K., Yan, X., & Hayasaka, T. (2007). An Asian emission inventory of anthropogenic emission sources for the period 1980–2020. Atmospheric Chemistry and Physics, 7, 4419–4444.CrossRefGoogle Scholar
  28. Ohrui, K., & Mitchell, M. J. (1997). Nitrogen saturation in Japanese forested watersheds. Ecological Applications, 7, 391–401.CrossRefGoogle Scholar
  29. Okochi, H., & Igawa, M. (2001). Elevational patterns of acid deposition into a forest and nitrogen saturation on Mt. Oyama, Japan. Water, Air, and Soil Pollution, 130, 1091–1096.CrossRefGoogle Scholar
  30. Oura, N. (2010). Effect of nitrogen deposition on nitrogen cycling in forested ecosystems and N2O emission from the forest floor. Bulletin of the National Institute of Agro-Environmental Sciences, 27, 1–84 (in Japanese with English summary).Google Scholar
  31. Phoenix, G. K., Emmett, B. A., Britton, A. J., Caporn, S. J. M., Dise, N. B., Helliwell, R., Jones, L., Leake, J. R., Leith, I. D., Sheppard, L. J., Sowerby, A., Pilkington, M. G., Rowe, E. C., Ashmorek, M. R., & Power, S. A. (2012). Impacts of atmospheric nitrogen deposition: responses of multiple plant and soil parameters across contrasting ecosystems in long-term field experiments. Global Change Biology, 18, 1197–1215.CrossRefGoogle Scholar
  32. Seto, S., Hara, H., Sato, M., Noguchi, I., & Tonooka, Y. (2004). Annual and seasonal trends of wet deposition in Japan. Atmospheric Environment, 38, 3543–3556.CrossRefGoogle Scholar
  33. Shibata, H., Kuraji, K., Toda, H., & Sasa, K. (2001). Regional comparison of nitrogen export to Japanese forest streams. The Scientific World, 1, 572–580.CrossRefGoogle Scholar
  34. Shimohara, T., Oishi, O., Utsunomiya, A., Mukai, H., Hatakeyama, S., Eun-Suk, J., Uno, I., & Murano, K. (2001). Characterization of atmospheric air pollutants at two sites in northern Kyushu, Japan—chemical form, and chemical reaction. Atmospheric Environment, 35, 667–681.CrossRefGoogle Scholar
  35. Solberg, S., Dobbertin, M., Reinds, G. J., Lange, H., Andreassen, K., Fernandez, P. G., Hildingsson, A., & de Vries, W. (2009). Analyses of the impact of changes in atmospheric deposition and climate on forest growth in European monitoring plots: a stand growth approach. Forest Ecology and Management, 258, 1735–1750.CrossRefGoogle Scholar
  36. Stoddard, J. L. (1994). Long-term changes in watershed retention of nitrogen—its causes and aquatic consequences. Environmental Chemistry of Lakes and Reservoirs, 237, 223–284.CrossRefGoogle Scholar
  37. Streets, D. G., Bond, T. C., Carmichael, G. R., Fernandes, S. D., Fu, Q., He, D., Klimont, Z., Nelson, S. M., Tsai, N. Y., Wang, M. Q., Woo, J. H., & Yarber, K. F. (2003). An inventory of gaseous and primary aerosol emissions in Asia in the year 2000. Journal of Geophysical Research-Atmospheres, 108(D21), 8809. doi: 10.1029/2002JD003093.CrossRefGoogle Scholar
  38. Takiguchi, Y., Takami, A., Sadanaga, Y., Lun, X. X., Shimizu, A., Matsui, I., Sugimoto, N., Wang, W., Bandow, H., & Hatakeyama, S. (2008). Transport and transformation of total reactive nitrogen over the East China Sea. Journal of Geophysical Research-Atmospheres, 113, D10306. doi: 10.1029/2007JD009462.CrossRefGoogle Scholar
  39. Tamaki, M., Katou, T., Sekiguchi, K., Kitamura, M., Taguchi, K., Ohara, M., Mori, A., Wakamatsu, S., Murano, K., Okita, T., Yamanaka, Y., & Hara, H. (1991). Acid precipitation chemistry over Japan. Nippon Kagaku Kaishi, 1991, 667–674 (in Japanese with English summary).CrossRefGoogle Scholar
  40. Thomas, R. Q., Canham, C. D., Weathers, K. C., & Goodale, C. L. (2010). Increased tree carbon storage in response to nitrogen deposition in the US. Nature Geoscience, 3, 13–17.CrossRefGoogle Scholar
  41. Tokuchi, N., Ohte, N., Usui, N., & Fukushima, K. (2011). Consideration of N dynamics in temperate forest ecosystem under increasing N deposition. Japanese Journal of Ecology, 61, 275–290 (in Japanese with English summary).Google Scholar
  42. Vitousek, P. M., Aber, J. D., Howarth, R. W., Likens, G. E., Matson, P. A., Schindler, D. W., Schlesinger, W. H., & Tilman, D. G. (1997). Human alteration of the global nitrogen cycle: sources and consequences. Ecological Applications, 7, 737–750.Google Scholar
  43. Wakamatsu, S., Utsunomiya, A., Han, J. S., Mori, A., Uno, I., & Uehara, K. (1996). Seasonal variation in atmospheric aerosols concentration covering northern Kyushu, Japan and Seoul, Korea. Atmospheric Environment, 30, 2343–2354.CrossRefGoogle Scholar
  44. Zhang, Z., Fukushima, T., Onda, Y., Mizugaki, S., Gomi, T., Kosugi, K., Hiramatsu, S., Kitahara, H., Kuraji, K., Terajima, T., Matsushige, K., & Tao, F. (2008). Characterisation of diffuse pollutions from forested watersheds in Japan during storm events—its association with rainfall and watershed features. Science of the Total Environment, 390, 215–226.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Masaaki Chiwa
    • 1
    Email author
  • Tsutomu Enoki
    • 1
  • Naoko Higashi
    • 1
  • Tomo’omi Kumagai
    • 2
  • Kyoichi Otsuki
    • 1
  1. 1.Kyushu University ForestKyushu UniversitySasaguriJapan
  2. 2.Hydrospheric Atmospheric Research CenterNagoya UniversityNagoyaJapan

Personalised recommendations