Advertisement

Water, Air, & Soil Pollution

, 224:1733 | Cite as

Effects of Climate, Land Management, and Sulfur Deposition on Soil Base Cation Supply in National Forests of the Southern Appalachian Mountains

  • T. C. McDonnellEmail author
  • T. J. Sullivan
  • B. J. Cosby
  • W. A. Jackson
  • K. J. Elliott
Article

Abstract

Forest soils having low exchangeable calcium (Ca) and other nutrient base cation (BC) reserves may induce nutrient deficiencies in acid-sensitive plants and impact commercially important tree species. Past and future depletion of soil BC in response to acidic sulfur (S) deposition, forest management, and climate change alter the health and productivity of forest trees. This study used a process model (Model of Acidification of Groundwater in Catchments [MAGIC]) to address a number of questions related to soil BC status for a group of 65 streams and their watersheds in the southern Blue Ridge physiographic province of the southern Appalachian Mountains. Future S deposition to the study watersheds used for the Base Scenario was specified according to proposed reductions in S emissions at the time of this study, representing a reduction of 42 % of ambient S deposition by 2020. Twenty additional simulations were considered, reflecting four alternate S deposition scenarios (6 %, 58 %, 65 %, and 78 % reduction), and various changes in timber harvest, temperature, and precipitation. Base Scenario soil exchangeable Ca and % base saturation showed decreasing trends from 1860 to 2100. Changes in tree harvesting had the largest effect on stream sum of base cations (SBC) and soil BC supply. Each of the scenario projections indicated that median year 2100 soil exchangeable Ca will be at least 20 % lower than pre-industrial values. The simulations suggested that substantial mass loss of soil BC has already occurred since pre-industrial times. Nearly the same magnitude of BC loss is expected to occur over the next 145 years, even under relatively large additional future reductions in S deposition.

Keywords

Base cation Acidification Forest productivity Appalachian Mountains MAGIC 

Notes

Acknowledgments

Support for this work was provided by the USDA Forest Service, through a contract to E&S Environmental Chemistry, Inc. This manuscript has not been subjected to agency review, and no official endorsement is implied.

References

  1. Baker, J. P., Bernard, D. P., Christensen, S. W., & Sale, M. J. (1990a). Biological effects of changes in surface water acid–base chemistry. Washington DC: National Acid Precipitation Assessment Program.Google Scholar
  2. Baker, L. A., Kauffman, P. R., Herlihy, A. T., & Eilers, J. M. (1990b). Current status of surface water acid–base chemistry. State of Science/Technology Report 9. Washington, DC: National Acid Precipitation Assessment Program.Google Scholar
  3. Cho, Y., Driscoll, C. T., Johnson, C. E., & Siccama, T. G. (2010). Chemical changes in soil and soil solution after calcium silicate addition to a northern hardwood forest. Biogeochemistry, 100, 3–20.CrossRefGoogle Scholar
  4. Cosby, B. J., Jenkins, A., Ferrier, R. C., Miller, J. D., & Walker, T. A. B. (1990). Modelling stream acidification in afforested catchments: long-term reconstructions at two sites in central Scotland. Journal of Hydrology, 120, 143–162.CrossRefGoogle Scholar
  5. Cosby, B. J., Wright, R. F., & Gjessing, E. (1995). An acidification model (MAGIC) with organic acids evaluated using whole-catchment manipulations in Norway. Journal of Hydrology, 170, 101–122.CrossRefGoogle Scholar
  6. Cosby, B. J., Norton, S. A., & Kahl, J. S. (1996). Using a paired catchment manipulation experiment to evaluate a catchment-scale biogeochemical model. Science of the Total Environment, 183, 49–66.CrossRefGoogle Scholar
  7. Côtè, B., Hendershot, W. J., & O'Halloran, I. P. (1993). Response of declining sugar maple to seven types of fertilization in southern Quebec: growth and nutrient status. In R. F. Huettl & D. Mueller-Dombois (Eds.), Forest decline in the Atlantic and Pacific region (pp. 162–174). Berlin: Springer-Verlag.CrossRefGoogle Scholar
  8. Driscoll, C. T., Lehtinen, M. D., & Sullivan, T. J. (1994). Modeling the acid–base chemistry of organic solutes in Adirondack, New York, lakes. Water Resources Research, 30, 297–306.CrossRefGoogle Scholar
  9. Elias, P. E., Burger, J. A., & Adams, M. B. (2009). Acid deposition effects on forest composition and growth on the Monongahela National Forest, West Virginia. Forest Ecology and Management, 258, 2175–2182.CrossRefGoogle Scholar
  10. Elliott, K. J., Vose, J. M., Knoepp, J. D., Johnson, D. W., Swank, W. J., & Jackson, W. (2008). Simulated effects of sulfur deposition on nutrient cycling in Class I Wilderness Areas. Journal of Environmental Quality, 37, 1419–1431.CrossRefGoogle Scholar
  11. Elliott, K. J., Knoepp, J. D., Vose, J. M., & Jackson, W. A. (2013). Interacting effects of wildfire severity and liming on nutrient cycling in a southern Appalachian wilderness area. Plant and Soil. doi: 10.1007/s11104-012-1416-z.Google Scholar
  12. Elwood, J. W., Sale, M. J., Kaufmann, P. R., & Cada, G. F. (1991). The Southern Blue Ridge Province. In D. F. Charles (Ed.), Acidic deposition and aquatic ecosystems: regional case studies (pp. 319–364). New York: Springer-Verlag.CrossRefGoogle Scholar
  13. Flannigan, M. D., Stocks, B. J., & Wotton, B. M. (2000). Climate change and forest fires. Science of the Total Environment, 262, 221–229.CrossRefGoogle Scholar
  14. Gholz, H. L., Vogel, S. A., Cropper, W. P., Jr., McKelvey, K., Ewel, K. C., Teskey, R. O., et al. (1991). Dynamics of canopy structure and light interception in Pinus elliottii stands, North Florida. Ecological Monographs, 61, 33–51.CrossRefGoogle Scholar
  15. Greaver, T. L., Sullivan, T. J., Herrick, J. D., Barber, M., Baron, J. S., Cosby, B. J., et al. (2012). Ecological effects of nitrogen and sulfur air pollution in the US: what do we know? Frontiers in Ecology and the Environment. doi: 10.1890/110049.Google Scholar
  16. Grier, C. C., Lee, K. M., Nadkarni, N. M., Klock, G. O., & Edgerton, P. J. (1989). Productivity of forests of the United States and its relation to soil and site factors and management practices: a review. Portland, OR: USDA Forest Service, Pacific Northwest Research Station.Google Scholar
  17. Halman, J. M., Schaberg, P. G., Hawley, G. J., & Eagar, C. (2008). Calcium addition at the Hubbard Brook Experimental Forest increases sugar storage, antioxidant activity and cold tolerance in native red spruce (Picea rubens). Tree Physiology, 28, 855–862.CrossRefGoogle Scholar
  18. Halman, J. M., Schaberg, P. G., Hawley, G. J., & Hansen, C. F. (2011). Potential role of soil calcium in recovery of paper birch following ice storm injury in Vermont, USA. Forest Ecology and Management, 261, 1539–1545.CrossRefGoogle Scholar
  19. Hanson, P. J., & Weltzin, J. F. (2000). Drought disturbance from climate change: response of United States forests. Science of the Total Environment, 262, 205–220.CrossRefGoogle Scholar
  20. Högberg, P., Fan, H., Quist, M., Binkleys, D., & Oloftamm, C. (2006). Tree growth and soil acidification in response to 30 years of experimental nitrogen loading on boreal forest. Global Change Biology, 12, 489–499.CrossRefGoogle Scholar
  21. Hornberger, G. M., Cosby, B. J., & Wright, R. F. (1989). Historical reconstructions and future forecasts of regional surface water acidification in southernmost Norway. Water Resource Research, 25, 2009–2018.CrossRefGoogle Scholar
  22. Huettl, R. F. (1989). Liming and fertilization as mitigation tools in declining forest ecosystems. Water, Air, & Soil Pollution, 44, 93–118.CrossRefGoogle Scholar
  23. Huettl, R. F., & Zoettl, H. W. (1993). Liming as a mitigation tool in Germany's declining forests — reviewing results from former and recent trials. Forest Ecology and Management, 61, 325–338.CrossRefGoogle Scholar
  24. Huntington, T. G. (2000). The potential for calcium depletion in forest ecosystems of southeastern United States: review and analysis. Global Biogeochemical Cycles, 14, 623–638.CrossRefGoogle Scholar
  25. Intergovernmental Panel on Climate Change (IPCC). (2007). Climate change 2007: the physical science basis. In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, et al. (Eds.), Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge/New York: Cambridge University Press.Google Scholar
  26. Iverson, L. R., Prasad, A. M., Matthews, S. N., & Peters, M. (2008). Estimating potential habitat for 134 eastern US tree species under six climate scenarios. Forest Ecology and Management, 254, 390–406.Google Scholar
  27. Jenkins, A., Cosby, B. J., Ferrier, R. C., Walker, T. A. B., & Miller, J. D. (1990). Modelling stream acidification in afforested catchments: an assessment of the relative effects of acid deposition and afforestation. Journal of Hydrology, 120, 163–181.CrossRefGoogle Scholar
  28. Johnson, D. W., Lindberg, S. E., Van Miegroet, H., Lovett, G. M., Cole, D. W., Mitchell, M. J., et al. (1993). Atmospheric deposition, forest nutrient status, and forest decline: implications of the Integrated Forest Study. In R. F. Huettl & D. Mueller-Dombois (Eds.), Forest decline in the Atlantic and Pacific region (pp. 66–81). Berlin: Springer-Verlag.CrossRefGoogle Scholar
  29. Johnson, D. W., Susfalk, R. B., Brewer, P. F., & Swank, W. T. (1999). Simulated effects of reduced sulfur, nitrogen, and base cation deposition on soils and solutions in southern Appalachian forests. Journal of Environmental Quality, 28, 1336–1346.CrossRefGoogle Scholar
  30. Jonasson, S., Michelsen, A., Schmidt, I. K., Nielsen, E. V., & Callaghan, T. V. (1996). Microbial biomass C, N. and P in two arctic soils after perturbations simulating climate change. Oecologia, 95, 179–186.CrossRefGoogle Scholar
  31. Karl, T. R., Melillo, J. M., & Peterson, T. C. (Eds.). (2009). Global climate change impacts in the United States. New York: Cambridge University Press.Google Scholar
  32. Kloeppel, B. D., Clinton, B. D., Vose, J. M., & Cooper, A. R. (2003). Drought impacts on tree growth and mortality of Southern Appalachian forests. In D. Greenland, D. G. Goodin, & R. C. Smith (Eds.), Variability and ecosystem response at long-term ecological research sites (pp. 43–55). New York: Oxford University Press.Google Scholar
  33. Kreutzer, K. (1995). Effects of forest liming on soil processes. Plant and Soil, 168–169, 447–470.CrossRefGoogle Scholar
  34. Lepistö, A., Whitehead, P. G., Neal, C., & Cosby, B. J. (1988). Modelling the effects of acid deposition: estimation of long term water quality responses in forested catchments in Finland. Nordic Hydrology, 19, 99–120.Google Scholar
  35. Long, R. P., Horsley, S. B., & Lilja, P. R. (1997). Impact of forest liming on growth and crown vigor of sugar maple and associated hardwoods. Canadian Journal of Forest Research, 27, 1560–1573.CrossRefGoogle Scholar
  36. Long, R. P., Horsley, S. B., & Hall, T. J. (2011). Long-term impact of liming on growth and vigor of northern hardwoods. Canadian Journal of Forest Research, 41, 1295–1307.CrossRefGoogle Scholar
  37. Lovett, G. M., Tear, T. H., Evers, D. C., Findlay, S. E. G., Cosby, B. J., Dunscomb, J. K., et al. (2009). Effects of air pollution on ecosystems and biological diversity in the eastern United States. Annals of the New York Academy of Sciences, 1162, 99–135.CrossRefGoogle Scholar
  38. Mattson, W. J., & Haack, R. A. (1987). The role of drought in outbreaks of plant-eating insects. BioScience, 337, 110–118.CrossRefGoogle Scholar
  39. McNulty, S. G., & Boggs, J. L. (2010). A conceptual framework: Redefining forest soil's critical acid loads under a changing climate. Environmental Pollution, 158, 2053–2058.CrossRefGoogle Scholar
  40. McNulty, S. G., Cohen, E. C., Myers, J. A. M., Sullivan, T. J., & Li, H. (2007). Estimates of critical acid loads and exceedances for forest soils across the conterminous United States. Environmental Pollution, 149, 281–292.CrossRefGoogle Scholar
  41. Mitchell, J. F. B., Manabe, S., Mlesho, V., & Tokioka, T. (1990). Equilibrium climate change – and its implications for future. In J. T. Houghton, G. T. Jenkins, & J. J. Ephaums (Eds.), Climate change (pp. 131–175). Cambridge: Cambridge University Press.Google Scholar
  42. Moldan, F., & Wright, R. F. (1998). Changes in runoff chemistry after five years of N addition to a forested catchment at Gårdsjön, Sweden. Forest Ecology and Management, 101, 187–197.CrossRefGoogle Scholar
  43. Moore, J. D., & Ouimet, R. (2010). Effects of two Ca fertilizer types on sugar maple vitality. Canadian Journal of Forest Research, 40, 1985–1992.CrossRefGoogle Scholar
  44. National Acid Precipitation Assessment Program (NAPAP). (1991). Integrated assessment report. Washington, DC: National Acid Precipitation Assessment Program.Google Scholar
  45. Natural Resources Conservation Service (NRCS) Soil Survey Staff. (2010). United States Department of Agriculture. Soil Survey Geographic (SSURGO) Database for North Carolina. Available online at http://websoilsurvey.nrcs.usda.gov/. Accessed 11/4/2010.
  46. Nohrstedt, H.-Ö. (2002). Effects of liming and fertilization (N, PK) on chemistry and nitrogen turnover in acidic forest soils in SW Sweden. Water, Air, & Soil Pollution, 139, 343–354.CrossRefGoogle Scholar
  47. Pabian, S. E., & Brittingham, M. C. (2007). Terrestrial liming benefits birds in an acidified forest in the Northeast. Ecological Applications, 17(8), 2184–2194.CrossRefGoogle Scholar
  48. Pabian, S. E., Rummel, S. M., Sharpe, W. E., & Brittingham, M. C. (2012). Terrestrial liming as a restoration technique for acidified forest ecosystems. International Journal of Forestry Research, 2012. doi: 10.1155/2012/976809.
  49. Rosenberg, N. J., Kimball, B. A., Martin, P., & Cooper, C. F. (1990). From climate and CO2 enrichment to evapotranspiration. In P. E. Waggoner (Ed.), Climate and U.S. water resources (pp. 151–175). New York: Wiley.Google Scholar
  50. Rosenbrock, H. H. (1960). An automatic method for finding the greatest or least value of a function. Computer Journal, 3, 175–184.CrossRefGoogle Scholar
  51. Schaberg, P. G., Tilley, J. W., Hawley, G. J., DeHayes, D. H., & Bailey, S. W. (2006). Associations of calcium and aluminum with the growth and health of sugar maple trees in Vermont. Forest Ecology and Management, 223, 159–169.CrossRefGoogle Scholar
  52. Shannon, J. D. (1998). Calculation of trends from 1900 through 1990 for sulfur and NOx-N deposition concentrations of sulfate and nitrate in precipitation, and atmospheric concentrations of SOx and NOx species over the southern Appalachians. Report prepared for the Southern Appalachian Mountains Initiative, Asheville, NC.Google Scholar
  53. Sharpe, W. E., & Voorhees, C. R. (2006). Effects of lime, fertilizer, and herbicide on herbaceous species diversity and abundance following red oak shelterwood harvest. In D. S. Buckley & W. K. Clatterbuck (Eds.), Proceedings 15th Central Hardwood Forest conference, Knoxville, TN, February 27–March 1, 2006. General rechnical report SRS–101 (pp. 702–708). Asheville, NC: USDA Forest Station, Southern Research Station.Google Scholar
  54. Sullivan, T. J., & McDonnell, T. C. (2012). Application of critical loads and ecosystem services principles to assessment of the effects of atmospheric sulfur and nitrogen deposition on acid-sensitive aquatic and terrestrial resources. Pilot case study: Central Appalachian Mountains (Report prepared for the U.S. Environmental Protection Agency, in association with Systems Research and Applications Corporation). Corvallis, OR: E&S Environmental Chemistry, Inc.Google Scholar
  55. Sullivan, T. J., Cosby, B. J., Driscoll, C. T., Charles, D. F., & Hemond, H. F. (1996). Influence of organic acids on model projections of lake acidification. Water, Air, & Soil Pollution, 91, 271–282.CrossRefGoogle Scholar
  56. Sullivan, T. J., Cosby, B. J., Webb, J. R., Snyder, K. U., Herlihy, A. T., Bulger, A. J., et al. (2002a). Assessment of the effects of acidic deposition on aquatic resources in the Southern Appalachian Mountains. Corvallis, OR: E&S Environmental Chemistry, Inc.Google Scholar
  57. Sullivan, T. J., Johnson, D. W., & Munson, R. (2002b). Assessment of effects of acid deposition on forest resources in the Southern Appalachian Mountains. Report prepared for the Southern Appalachian Mountains Initiative (SAMI). Corvallis, OR: E&S Environmental Chemistry, Inc.Google Scholar
  58. Sullivan, T. J., Cosby, B. J., Herlihy, A. T., Webb, J. R., Bulger, A. J., Snyder, K. U., et al. (2004). Regional model projections of future effects of sulfur and nitrogen deposition on streams in the southern Appalachian Mountains. Water Resources Research, 40, W02101 doi: 10.1029/2003WR001998.
  59. Sullivan, T. J., Webb, J. R., Snyder, K. U., Herlihy, A. T., & Cosby, B. J. (2007). Spatial distribution of acid-sensitive and acid-impacted streams in relation to watershed features in the southern Appalachian mountains. Water, Air, & Soil Pollution, 182, 57–71.CrossRefGoogle Scholar
  60. Sullivan, T. J., Cosby, B. J., Webb, J. R., Dennis, R. L., Bulger, A. J., & Deviney, F. A., Jr. (2008). Streamwater acid–base chemistry and critical loads of atmospheric sulfur deposition in Shenandoah National Park, Virginia. Environmental Monitoring and Assessment, 137, 85–99.CrossRefGoogle Scholar
  61. Sullivan, T. J., Cosby, B. J., Jackson, B., Snyder, K. U., & Herlihy, A. T. (2011). Acidification and prognosis for future recovery of acid-sensitive streams in the Southern Blue Ridge Province. Water, Air, and Soil Pollution, 219, 11–26.CrossRefGoogle Scholar
  62. Turner, R. S., Cook, R. B., van Miegroet, H., Johnson, D. W., Elwood, J. W., Bricker, O. P., et al. (1990). Watershed and lake processes affecting chronic surface water acid–base chemistry. State of the Science, SOS/T 10. Washington DC: National Acid Precipitation Assessment Program.Google Scholar
  63. Wilmot, T. R., Ellsworth, D. S., & Tyree, M. T. (1996). Base cation fertilization and liming effects on nutrition and growth of Vermont sugar maple stands. Forest Ecology and Management, 84, 123–134.CrossRefGoogle Scholar
  64. Wright, R. F., & Cosby, B. J. (1987). Use of a process-oriented model to predict acidification at manipulated catchments in Norway. Atmospheric Environment, 21, 727–730.CrossRefGoogle Scholar
  65. Wright, R. F., Cosby, B. J., Ferrier, R. C., Jenkins, A., Bulger, A. J., & Harriman, R. (1994). Changes in the acidification of lochs in Galloway, southwestern Scotland, 1979–1988: the MAGIC model used to evaluate the role of afforestation, calculate critical loads, and predict fish status. Journal of Hydrology, 161, 257–285.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht (outside the USA) 2013

Authors and Affiliations

  • T. C. McDonnell
    • 1
    Email author
  • T. J. Sullivan
    • 1
  • B. J. Cosby
    • 2
  • W. A. Jackson
    • 3
  • K. J. Elliott
    • 4
  1. 1.E&S Environmental Chemistry, Inc.CorvallisUSA
  2. 2.Department of Environmental SciencesUniversity of VirginiaCharlottesvilleUSA
  3. 3.USDA Forest ServiceAshevilleUSA
  4. 4.USDA Forest Service, Southern Research Station, Coweeta Hydrologic LaboratoryOttoUSA

Personalised recommendations