Water, Air, & Soil Pollution

, 224:1693 | Cite as

Quantification of In Situ Denitrification Rates in Groundwater Below an Arable and a Grassland System

  • M. M. R. Jahangir
  • P. Johnston
  • K. Addy
  • M. I. Khalil
  • P. M. Groffman
  • K. G. Richards


Understanding denitrification rates in groundwater ecosystems can help predict where agricultural reactive nitrogen (N) contributes to environmental degradation. In situ groundwater denitrification rates were determined in subsoil, at the bedrock interface and in bedrock at two sites, grassland and arable, using an in situ ‘push–pull’ method with 15N-labelled nitrate (NO3 –N). Measured groundwater denitrification rates ranged from 1.3 to 469.5 μg N kg−1 day−1. Exceptionally high denitrification rates observed at the bedrock interface at grassland site (470 ± 152 μg N kg−1 day−1; SE, standard error) suggest that deep groundwater can serve as substantial hotspots for NO3 –N removal. However, denitrification rates at the other locations were low and may not substantially reduce NO3 –N delivery to surface waters. Denitrification rates were negatively correlated with ambient dissolved oxygen, redox potential, k s and NO3 (all p values, p < 0.01) and positively correlated with SO4 2− (p < 0.05). Higher mean N2O/(N2O + N2) ratios at an arable (0.28) site than the grassland (0.10) revealed that the arable site has higher potential to indirect N2O emissions. Identification of areas with high and low denitrification and related site parameters can be a tool to manage agricultural N to safeguard the environment.


Denitrification 15N-enrichment 15N–N215N–N2 Groundwater N2O mole fraction 



The study was funded by the Department of Agriculture and Food, Ireland, through the Research Stimulus Fund Programme (grant RSF 06383) in collaboration with the Department of Civil, Structural and Environmental Engineering, The University of Dublin, Trinity College. The authors sincerely acknowledge the contribution of Mr. John Murphy in the field work.


  1. Addy, K., Kellogg, D. Q., Gold, A. J., Groffman, P. M., Ferendo, G., & Sawyer, C. (2002). In situ push-pull method to determine groundwater denitrification in riparian zones. Journal of Environmental Quality, 31, 1017–1024.CrossRefGoogle Scholar
  2. Askew, F. E., & Smith, R. K. (2005). Inorganic non-metallic constituents, 4500-SO4 2−; Sulphate; Method 4500-SO4 2− E. Turbimetric method. In Eaton et al. (Eds.), Standard methods for the examination of waters and waste water (21st ed., pp. 4–188). NW Washington: American Public Health Association. ISBN 0-87553-047-8 (2001–3710).Google Scholar
  3. Barrett, M., Jahangir, M. M. R., Lee, C., Smith, C. J., Bhreathnach, N., Collins, G., Richards, K. G., & O’Flaherty, V. (2013). Abundance of denitrification genes under different piezometer depths in four Irish agricultural groundwater sites. Environmental Science & Pollution Research, 20, 6646–6657.CrossRefGoogle Scholar
  4. Blackmer, A. M., & Bremner, J. M. (1978). Inhibitory effect of nitrate on reduction of nitrous oxide to molecular nitrogen by microorganisms. Soil Biology and Biochemistry, 10, 187–191.CrossRefGoogle Scholar
  5. Böhlke, J. K., Verstraeten, I. M., & Kraemer, T. F. (2007). Effects of surface-water irrigation on sources, fluxes, and residence times of water, nitrate, and uranium in an alluvial aquifer. Applied Geochemistry, 22, 152–174.CrossRefGoogle Scholar
  6. Bollmann, A., & Conrad, R. (1997). Acetylene blockage technique leads to underestimation of denitrification rates in oxic soils due to scavenging of intermediate nitric oxide. Soil Biology and Biochemistry, 29, 1067–1077.CrossRefGoogle Scholar
  7. Bouwer, H., & Rice, R. C. (1976). A slug test for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells. Water Resources Research, 12, 423–428.CrossRefGoogle Scholar
  8. Buss, S. R., Rivett, A. R., Morgan, P., & Bemment, C. D. (2005). Attenuation of nitrate in the subsurface environment. England: Environment Agency Report.Google Scholar
  9. Clough, T. J., Addy, K., Kellogg, D. Q., Nowicki, B. L., Gold, A. J., & Groffman, P. M. (2007). Dynamics of nitrous oxide in groundwater at the aquatic–terrestrial interface. Global Change Biology, 13, 1528–1537.CrossRefGoogle Scholar
  10. Davidson, E. A., & Firestone, R. K. (1988). Measurement of nitrous oxide dissolved in soil solution. Soil Science Society of America Journal, 52, 1201–1203.CrossRefGoogle Scholar
  11. Deurer, M., Von der Heide, C., Bottcher, J., Duijnisveld, W. H. M., Weymann, D., & Well, R. (2008). The dynamic of N2O near the groundwater table and the transfer of N2O into the unsaturated zone: a case study from a sandy aquifer in Germany. Cataena, 72, 362–373.CrossRefGoogle Scholar
  12. EC (2002). Council Directive (2000/60/EEC) of the 23rd October 2000 on establishing a framework for Community action in the field of water policy. Official Journal of the European Communities L327/1, Brussels, Belgium.Google Scholar
  13. Fenton, O., Richards, K. G., Khalil, M. I., & Healy, M. G. (2009). Factors affecting nitrate in shallow groundwater under a beef farm in South Eastern Ireland. Journal of Environmental Management, 90(10), 3135–3146.CrossRefGoogle Scholar
  14. Fenton, O., Schulte, R. P. O., Jordan, P., Lalor, S. T. J., & Richards, K. G. (2011). Time lag: a methodology for the estimation of vertical and horizontal travel and flushing timescales to nitrate threshold concentrations in Irish aquifers. Environmental Science and Policy, 14(4), 419–431.CrossRefGoogle Scholar
  15. Fitzsimon, V. P., & Misstear, B. D. R. (2006). Estimating groundwater recharge through tills: a sensitivity analysis of soil moisture budgets and till properties in Ireland. Hydrogeology Journal, 14, 548–561.CrossRefGoogle Scholar
  16. Francis, A. J., Slater, J. M., & Dodge, C. J. (1989). Denitrification in deep sub-surface sediments. Geomicrobiology Journal, 7, 103–106.CrossRefGoogle Scholar
  17. Freeze, R. A., & Cherry, J. A. (1979). Ground water. New Jersey: Prentice Hall.Google Scholar
  18. Galloway, J. N., Dentener, F. J., Capone, D. G., Boyer, E. W., Howarth, R. W., Seitzinger, S. P., Asner, G. P., Cleveland, C. C., Green, P. A., Holland, E. A., Karl, D. M., Michaels, A. F., Porter, J. H., Townsend, A. R., & Vorosmarty, C. J. (2004). Nitrogen cycles: past, present and future. Biogeochemistry, 70, 153–226.CrossRefGoogle Scholar
  19. Galloway, J. N., Townsend, A. R., Erisman, J. W., Bekunda, M., Cai, Z. C., Freney, J. R., Martinelli, L. A., Seitzinger, S. P., & Sutton, M. A. (2008). Transformation of the N cycle: recent trends, questions and potential solutions. Science, 320, 889–892.CrossRefGoogle Scholar
  20. Groffman, P. M., Gold, A. J., & Jacinthe, P. A. (1998). Nitrous oxide production in riparian zones and groundwater. Nutrient Cycling Agroecosystems, 52, 179–186.CrossRefGoogle Scholar
  21. Groffman, P. M., Altabet, M. A., Böhlke, J. K., Butterbach-Bahl, K., David, M. B., Firestone, M. K., Giblin, A. E., Kana, T. M., Nielsen, L. P., & Voytek, M. A. (2006). Methods for measuring denitrification: diverse approaches to a difficult problem. Ecological Applications, 16, 2091–2122.CrossRefGoogle Scholar
  22. Harrison, M. D., Groffman, P. M., Mayer, P. M., Kaushal, S. S., & Newcomer, T. A. (2011). Denitrification in alluvial wetlands in an urban landscape. Journal of Environmental Quality, 40, 634–646.CrossRefGoogle Scholar
  23. Ishizuka, S., Iswandi, A., Nakajima, Y., Yonemura, S., Sudo, S., Tsuruta, H., & Muriyarso, D. (2005). Spatial patterns of greenhouse gas emission in a tropical rainforest in Indonesia. Nutrient Cycling in Agroecosystems, 71, 55–62.CrossRefGoogle Scholar
  24. Istok, J. D., Humphrey, M. D., Schroth, M. H., Hyman, M. R., & O’Reilly, K. T. (1997). Single-well, “push-pull” test for in situ determination of microbial activities. Ground Water, 35, 619–631.CrossRefGoogle Scholar
  25. Jahangir, M. M. R., Roobroeck, D., Van Cleemput, O., & Boeckx, P. (2011). Spatial variability and biophysicochemical controls on N2O emissions from differently tilled arable soils. Biology and Fertility of Soils, 47(7), 753–766.CrossRefGoogle Scholar
  26. Jahangir, M. M. R., Khalil, M. I., Johnston, P. M., Cardenas, L., Butler, M., Hatch, D., Barrett, M. M., O’Flaherty, V., & Richards, K. G. (2012a). Denitrification potential in subsoils: a mechanism to reduce nitrate leaching to groundwater. Agriculture, Ecosystems & Environment, 147, 13–23.CrossRefGoogle Scholar
  27. Jahangir, M. M. R., Johnston, P. M., Barrett, M., Khalil, M. I., Fenton, O., Boeckx, P., Groffman, P., & Richards, K. G. (2012b). Denitrification and indirect N2O emissions from groundwater: hydrologic and biogeochemical influences. Journal of Contaminant Hydrology, 152, 70–81.CrossRefGoogle Scholar
  28. Kana, T. M., Darkangelo, C., Hunt, M. D., Oldham, J. B., Bennett, G. E., & Cornwell, J. C. (1994). Membrane inlet mass spectrometer for rapid high precision determination N2, O2 and Ar in environmental water samples. Analytical Chemistry, 66, 4166–4170.CrossRefGoogle Scholar
  29. Kellogg, D. Q., Gold, A. J., Groffman, P. M., Addy, K., Stolt, M. H., & Blazejewski, G. (2005). In situ groundwater denitrification in stratified, permeable soils underlying riparian wetlands. Journal of Environmental Quality, 34, 524–533.CrossRefGoogle Scholar
  30. Kolle, W., Strebel, O., & Bottcher, J. (1985). Formation of sulphate by microbial denitrification in a reducing aquifer. Water Supply, 3, 35–40.Google Scholar
  31. Konrad, C. (2007). Methoden zur Bestimmung des Umsatzes von Stickstoff, dargestellt fur drei pleistozane Groundwasserleiter Nord-deutschlands, PhD thesis, Dresden University Of Technology, Germany, p. 157.Google Scholar
  32. Lemon, E. (1981). Nitrous oxide in freshwaters of the Great Lakes basins. Limnology and Oceanography, 26, 867–879.CrossRefGoogle Scholar
  33. Linne von Berg, K. H., & Bothe, H. (1992). The distribution of denitrifying bacteria in soil monitored by DNA-probing. FEMS Microbiology Ecology, 86, 331–340.CrossRefGoogle Scholar
  34. Mathieu, O., Leveque, J., Heault, C., Milloux, M. J., Bizouard, F., & Andreux, F. (2006). Emissions and spatial variability of N2O, N2 and nitrous oxide mole fraction at the field scale, revealed with 15N isotopic techniques. Soil Biology and Biochemistry, 38, 941–951.CrossRefGoogle Scholar
  35. McGarrigle, M., Lucey, J., & Ó’Cinnéde, M. (2010). Water quality in Ireland 2007–2009. Synthesis report. Wexford: Environmental protection Agency.Google Scholar
  36. Misstear, B. D. R., Brown, L., & Johnston, P. M. (2009). Estimation of groundwater recharge in a major sand and gravel aquifer in Ireland using multiple approaches. Hydrogeology Journal, 17, 693–706.CrossRefGoogle Scholar
  37. Mosier, A. R., & Klemedtsson, L. (1994). Measuring denitrification in the field. In Weaver et al. (Eds.), Methods of soil analysis. Part 2, SSSA Book Ser 5 (pp. 1047–1065).Google Scholar
  38. Mosier, A. R., & Schimel, D. S. (1993). Nitrification and denitrification. In R. Knowles & T. H. Blackburn (Eds.), Nitrogen isotope techniques (pp. 181–208). Academic Press: Orlando.Google Scholar
  39. Nelson, W. M., Gold, A. J., & Groffman, P. M. (1995). Spatial and temporal variation in groundwater nitrate removal in a riparian forest. Journal of Environmental Quality, 24, 691–699.CrossRefGoogle Scholar
  40. Organisation of Economic Co-operation and Development. (2009). OECD environmental performance reviews of Ireland, conclusions and recommendations (pp. 2–18). Paris: Organisation of Economic Co-operation and Development.Google Scholar
  41. Ott, R. L. (1993). An introduction to statistical methods and data analysis (4th ed.). Belmont: Duxbury Press.Google Scholar
  42. Premrov, A., Coxon, C. E., Hackett, R., Kirwan, L., & Richards, K. G. (2012). Effects of over-winter green cover on groundwater nitrate and dissolved organic carbon concentrations beneath tillage land. Science of the Total Environment, 438, 144–153.CrossRefGoogle Scholar
  43. Richards, K., Coxon, C. E., & Ryan, M. (2005). Unsaturated zone travel time to groundwater on a vulnerable site. Irish Geography, 38, 57–71.CrossRefGoogle Scholar
  44. Rivett, M. O., Buss, S. R., Morgan, P., Smith, J. S. N., & Bemment, C. D. (2008). Nitrate attenuation in groundwater: a review of biogeochemical controlling processes. Water Research, 42, 4215–4232.CrossRefGoogle Scholar
  45. Robertson, L. A., Dalsgaard, T., Revsbech, N. P., & Kuenen, J. (1995). Confirmation of ‘aerobic denitrification’ in batch cultures, using gas chromatography and 15N mass spectrometry. FEMS Microbiol Ecology, 18, 113–120.CrossRefGoogle Scholar
  46. Schipper, L., & Vojvodic-Vukovic, M. (1998). Nitrate removal from groundwater using a denitrification wall amended with sawdust: field trial. Journal of Environmental Quality, 27, 664–668.CrossRefGoogle Scholar
  47. Scholefield, D., Hawkins, J. M. B., & Jackson, S. M. (1997). Use of flowing helium atmosphere incubation technique to measure the effects of denitrification controls applied to intact cores of a clay soil. Soil Biology and Biochemistry, 29, 1337–1344.CrossRefGoogle Scholar
  48. Seitzinger, S., Harrison, J. A., Böhlke, J. K., Bouwman, A. F., Lowrance, R., Peterson, B., Tobias, C., & Van Drecht, G. (2006). Denitrification across landscape and waterscape: a synthesis. Ecological Application, 16, 2064–2090.CrossRefGoogle Scholar
  49. Simek, M., & Cooper, J. E. (2002). The influence of soil pH on denitrification: process towards the understanding of this interaction over the last 50 years. European Journal of Soil Science, 53, 345–354.CrossRefGoogle Scholar
  50. Simmons, R. C., Gold, A. J., & Groffman, P. M. (1992). Nitrate dynamics in riparian forests: groundwater studies. Journal of Environmental Quality, 21, 656–665.CrossRefGoogle Scholar
  51. Starr, J. L., Sadeghi, A. M., Parkin, T. B., & Meisinger, J. J. (1996). A tracer test to determine the fate of nitrate in shallow groundwater. Journal of Environmental Quality, 25, 917–923.CrossRefGoogle Scholar
  52. Technology, I., & Council, R. (2002). A systematic approach to in situ bioremediation in groundwater. Washington: Technical/Regulatory Guidelines.Google Scholar
  53. Tiedje, J. M. (1982). Denitrification. In Page et al. (Eds.), Methods of soil analysis. Part 2. Agronomy monograph no. 9 (2nd ed., pp. 1011–1025). Madison: ASA and SSSA.Google Scholar
  54. Ueda, S., Ogura, N., & Yoshinary, T. (1993). Accumulation of nitrous oxide in aerobic groundwaters. Water Research, 27, 1787–1792.CrossRefGoogle Scholar
  55. Van Drecht, G., Bouwman, A. F., Knoop, J. M., Beusen, A. H. W., & Meinardi, C. R. (2003). Global modelling of the fate of nitrogen from point and non-point sources in soils, groundwater, and surface water. Global Biogeochemical Cycles, 17(4), 1115. doi: 10.1029/2003GB002060.Google Scholar
  56. Vogel, J. C., Talma, A. S., & Heaton, T. H. E. (1981). Gaseous nitrogen as evidence for denitrification in groundwater. Journal of Hydrology, 50(1–3), 191–200.CrossRefGoogle Scholar
  57. Von der Heide, C., Böttcher, J., Deurer, M., Weymann, D., Well, R., & Duijnisveld, W. H. M. (2008). Spatial variability of N2O concentrations and of denitrification-related factors in the surficial groundwater of a catchment in Northern Germany. Journal of Hydrology, 360, 230–241.CrossRefGoogle Scholar
  58. VSN International Ltd. (2011). GenStat. Version 13.1. Oxford: VSN International Ltd.Google Scholar
  59. Weymann, D., Well, R., Flessa, H., von der Heide, C., Deurer, M., Meyer, K., Konrad, C., & Walther, W. (2008). Groundwater N2O emission factors of nitrate-contaminated aquifers as derived from denitrification progress and N2O accumulation. Biogeosciences Discussion, 5, 1215–1226.CrossRefGoogle Scholar
  60. Weymann, D., Geistlinger, H., Well, R., Von der Heide, C., & Flessa, H. (2010). Kinetics of N2O production and reduction in a nitrate-contaminated aquifer inferred from laboratory incubation experiments. Biogeosciences, 7, 1953–1972.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • M. M. R. Jahangir
    • 1
    • 2
    • 3
  • P. Johnston
    • 2
  • K. Addy
    • 4
  • M. I. Khalil
    • 5
  • P. M. Groffman
    • 6
  • K. G. Richards
    • 1
  1. 1.Teagasc Environment Research CentreJohnstown Castle EstateCo. WexfordIreland
  2. 2.Department of Civil, Structural and Environmental EngineeringTrinity CollegeDublinIreland
  3. 3.Department of Soil ScienceBangladesh Agricultural UniversityMymensinghBangladesh
  4. 4.Department of Natural Resources ScienceUniversity of Rhode IslandKingstonUSA
  5. 5.Environmental Protection AgencyJohnstown Castle EstateCo. WexfordIreland
  6. 6.Cary Institute of Ecosystem StudiesMillbrookUSA

Personalised recommendations