Advertisement

Water, Air, & Soil Pollution

, 224:1678 | Cite as

Comparison of Sequential Extraction and Bioaccessibility Analyses of Lead Using Urban Soils and Reference Materials

  • Jeffrey L. HowardEmail author
  • Brian R. Dubay
  • Shawn P. McElmurry
  • Josiah Clemence
  • W. Lee Daniels
Article

Abstract

A study was undertaken using urban soils in Detroit, MI and reference materials (cerussite, anglesite, pyromorphite, apatite, goethite, calcite, pyrolusite, and peat) to determine which geochemical forms of Pb measured by sequential extraction analysis are bioaccessible. The results suggest that the water soluble (Pb-fulvic acid complexes), exchangeable, and part of the carbonate-occluded fractions are bioaccessible. The Fe oxide-occluded, Mn oxide-occluded, and higher molecular weight component of the organically bound fraction are not bioaccessible. Sequential extraction predicts the presence of detectable levels of bioaccessible Pb in the rhizosphere when the summed total is ≥90 mg kg−1 and labile Pb is ≥30 mg kg−1. Cerussite (paint-Pb) and anglesite (auto-Pb), recovered mainly in the carbonate-occluded fraction, may cause an overestimation of calcite-Pb. Pyromorphite and apatite Pb (bone) may cause an overestimation of Fe oxide-occluded Pb.

Keywords

Anthrosol Pollution Sequential extraction Bioaccessibility 

Notes

Acknowledgments

Thanks to Amy Benchich, Ryan Thomas, and Sharla Wood (Wayne State University); Joe Calus and Eric Gano (USDA-NRCS); and John Galbraith and Julie Burger (VPI&SU) for their assistance during this study.

References

  1. Adriano, D. C. (2001). Trace elements in terrestrial environments. Berlin: Springer.CrossRefGoogle Scholar
  2. Al-Barrak, K., & Rowell, D. L. (2006). The solubility of gypsum in calcareous soils. Geoderma, 136, 830–837.CrossRefGoogle Scholar
  3. Amrhein, C., Strong, J. E., & Mosher, P. A. (1992). Effect of deicing salts on metal and organic matter mobilization in roadside soils. Environmental Science and Technology, 26, 703–709.CrossRefGoogle Scholar
  4. Antoniadis, V., & Alloway, B. J. (2002). The role of dissolved organic carbon in the mobility of Cd, Ni and Zn in sewage sludge-amended soils. Environmental Pollution, 117, 515–521.CrossRefGoogle Scholar
  5. Bailey, E. H., Mosselmans, J. F. W., & Young, S. D. (2005). Time-dependent surface reactivity of Cd sorbed on calcite, hydroxylapatite and humic acid. Mining Magazine, 69, 563–575.CrossRefGoogle Scholar
  6. Beckett, P. H. T. (1989). The use of extractants in studies on trace metals in soils, sewage sludges, and sludge-treated soils. In B. A. Stewart (Ed.), Advances in soil science (Vol. 9, pp. 144–176). Berlin: Springer.CrossRefGoogle Scholar
  7. Berna, F., Matthews, A., & Weiner, S. (2004). Solubilities of bone mineral from archaeological sites: the recrystallization window. Journal of Archaeological Science, 31, 867–882.CrossRefGoogle Scholar
  8. Bickel, M. J. (2010). Spatial and temporal relationships between blood lead and soil lead concentrations in Detroit, Michigan. M. S (p. 67). Detroit, Michigan: Thesis, Dept. of Civil and Environ. Eng., Wayne State Univ.Google Scholar
  9. Chaney, R. L., Mielke, H. W., & Sterrett, S. B. (1988). Speciation, mobility and bioavailability of soil lead. In B. E. Davies & B. G. Wixsom (Eds.), Lead in soils: issues and guidelines (p. 315). Kent, England: Science Reviews, Ltd.Google Scholar
  10. Chaney, R. L., Broadhurst, C. L., & Centofanti, T. (2010). Phytoremediation of soil trace elements. In P. S. Hooda (Ed.), Trace elements in soils (pp. 312–352). West Sussex: Wiley.Google Scholar
  11. Chao, T. T. (1972). Selective dissolution of manganese oxides from soils and sediments with acidified hydroxlamine hydrochloride. Soil Science Sociey of America Proceedings, 36, 764–768.CrossRefGoogle Scholar
  12. Clark, H. F., Brabander, D. J., & Erdil, R. M. (2006). Sources, sinks, and exposure pathways of lead in urban garden soil. Journal of Environmental Quality, 35, 2066–2074.CrossRefGoogle Scholar
  13. Clark, H. F., Hausladen, D. M., & Brabander, D. J. (2008). Urban gardens: lead exposure, recontamination mechanisms, and implications for remedial design. Environmental Research, 107, 312–319.CrossRefGoogle Scholar
  14. Clesceri, L. S., Greenberg, A. E., & Eaton, A. D. (1998). Method 3111—metals By Flame Atomic Absorption Spectrometry. 20th ed. Standard Methods for the Examination of Water and Wastewater. Washington, DC: American Public Health Association, American Water Works Association, and Water Environment Federation.Google Scholar
  15. Corp, N., & Morgan, A. J. (1991). Accumulation of metals from polluted soils by the earthworm Lumbricus rubellus: can laboratory exposure of control worms reduce biomonitoring problems? Environmental Pollution, 74, 39–52.CrossRefGoogle Scholar
  16. Cotter-Howells, J. (1996). Lead phosphate formation in soils. Environmental Pollution, 93, 9–16.CrossRefGoogle Scholar
  17. Davis, J. C. (1986). Statistics and data analysis in geology (p. 646). New York: Wiley.Google Scholar
  18. Detroit Free Press (2003). Free Press soil study: samples offer a cross-section of contamination. Detroit Free Press, January 23, 2003.Google Scholar
  19. Drexler, J. W., & Brattin, W. J. (2007). An in vitro procedure for estimation of lead relative bioavailability: with validation. Human Ecological Risk Assessment, 13, 383–401.CrossRefGoogle Scholar
  20. Dubay, B. R. (2012). Urban soil genesis, weathering of waste building materials, and bioavailability of lead in a chronosequence at former demolition sites, Detroit, Michigan. M.S. thesis (p. 107). Detroit, MI: Dept. of Geology, Wayne State University.Google Scholar
  21. Duchesne, J., & Reardon, E. J. (1995). Measurement and prediction of portlandite solubility in alkali solutions. Cement and Concrete Research, 25, 1043–1053.CrossRefGoogle Scholar
  22. Ernst, G., Zimmermann, S., Christie, P., & Frey, B. (2008). Mercury, cadmium and lead in different ecophysiological groups of earthworms in forest soils. Environmental Pollution, 156, 1304–1313.CrossRefGoogle Scholar
  23. Filgueiras, A. V., Lavilla, I., & Bendicho, C. (2002). Chemical sequential extraction for metal partitioning in environmental solid samples. Journal Environmental Monthly, 4, 823–857.CrossRefGoogle Scholar
  24. Franklin, L. (2005). Organic fractionation and chemical characterization of organometallic forms of lead in contaminated Michigan soils. PhD dissertation, Dept. of Civil and Environmental Engineering (p. 230). Detroit, MI: Wayne State University.Google Scholar
  25. Fraser, A., Lambkin, D. C., Lee, M. R., Schofield, P. F., Mosselmans, J. F. W., & Hodson, M. E. (2011). Incorporation of lead into calcium carbonate granules secreted by earthworms living in lead contaminated soils. Geochimica et Cosmochimica Acta, 75, 2544–2556.CrossRefGoogle Scholar
  26. Galbraith, J. M. (2011). Proposed revisions to the future 12th edition of Keys to Soil Taxonomy. International Committee for Anthropogenic Soils Circular Letter 7, 6 pp.Google Scholar
  27. Halim, M., Conte, P., & Piccolo, A. (2003). Potential availability of heavy metals to phytoextraction from contaminated soils induced by exogenous humic substances. Chemosphere, 52, 265–275.CrossRefGoogle Scholar
  28. Harrison, R. M., Laxen, D. P. H., & Wilson, S. J. (1981). Chemical associations of lead, cadmium, copper and zinc in street dusts and roadside soils. Environmental Science and Technology, 15, 1378–1383.CrossRefGoogle Scholar
  29. Hettiarachchi, G. M., & Pierzynski, G. M. (2004). Soil lead bioavailability and in situ remediation of lead-contaminated soils: a review. Environmental Progress, 23, 78–93.CrossRefGoogle Scholar
  30. Hodges, S. C., & Zelazny, L. W. (1980). Determination of noncrystalline soil components by weight difference after selective dissolution. Clays and Clay Minerals, 28, 35–42.CrossRefGoogle Scholar
  31. Howard, J. L. (2010). Late Pleistocene glaciolacustrine sedimentation and paleogeography of southeastern Michigan, USA. Sedimentary Geology, 223, 126–142.CrossRefGoogle Scholar
  32. Howard, J. L., & Sova, J. (1993). Sequential extraction analysis of lead in Michigan roadside soils: mobilization in the vadose zone by deicing salts. Journal of Soil Contamination, 2, 361–378.CrossRefGoogle Scholar
  33. Howard, J. L., & Shu, J. (1996). Sequential extraction analysis of heavy metals using a chelating agent (NTA) to counteract resorption. Environmental Pollution, 91, 89–96.CrossRefGoogle Scholar
  34. Howard, J. L., & Vandenbrink, W. J. (1999). Sequential extraction analysis of heavy metals in sediments of variable composition using nitrilotriacetic acid to counteract resorption. Environmental Pollution, 106, 285–292.CrossRefGoogle Scholar
  35. Howard, J. L., & Olszewska, D. (2011). Pedogenesis, geochemical forms of heavy metals, and artifact weathering in an urban soil chronosequence, Detroit, Michigan. Environmental Pollution, 159, 754–761.CrossRefGoogle Scholar
  36. Howard, J. L., Clawson, C. R., & Daniels, W. L. (2012). A comparison of mineralogical techniques and potassium adsorption isotherm analysis for relative dating and correlation of late Quaternary soil chronosequences. Geoderma, 179–180, 81–95.CrossRefGoogle Scholar
  37. Howard, J. L., Dubay, B. R., & Daniels, W. L. (2013). Artifact weathering, anthropogenic microparticles, and lead contamination in urban soils at former demolition sites, Detroit, Michigan. Environmental Pollution, 179, 1–12.CrossRefGoogle Scholar
  38. Kaplan, M. F., & Mendel, J. E. (1982). Ancient glass and the safe disposal of nuclear waste. Archaeology, 35(4), 22–29.Google Scholar
  39. Kaste, J. M., Friedland, A. J., & Miller, E. K. (2005). Potentially mobile lead fractions in montane organic-rich soil horizons. Water, Air, and Soil Pollution, 167, 139–154.CrossRefGoogle Scholar
  40. Kessler-Arnold, K. A., & O’Hearn, M. (1989). Background concentrations of metals and cyanide in lower Michigan soils. In 44 th Purdue Ind. Waste Conf. Proc (pp. 33–47). MI, Lewis: Chelsea.Google Scholar
  41. Kim, K. R., Owens, G., & Naidu, R. (2010). Effect of root-induced changes on dynamics and plant uptake of heavy metals in rhizosphere soil. Pedosphere, 20, 494–504.CrossRefGoogle Scholar
  42. Laidlaw, M. A. S., & Filippelli, G. M. (2008). Resuspension of urban soils as a persistent source of lead poisoning in children: a review and new directions. Applied Geochemistry, 23, 2021–2039.CrossRefGoogle Scholar
  43. Laing, G. D. (2010). Analysis and fractionation of trace elements in soils. In P. S. Hooda (Ed.), Trace elements in soils (pp. 53–80). New York: Wiley.CrossRefGoogle Scholar
  44. Lee, M. K. (1985). Earthworms. Their ecology, and relationships with soils and land use. New York: Academic.Google Scholar
  45. Li, F., Fan, Z., Xiao, P., Oh, K., Ma, X., & Hou, W. (2009). Contamination, chemical speciation and vertical distribution of heavy metals in soils of an old and large industrial zone in northeast China. Environmental Geology, 57, 1815–1823.CrossRefGoogle Scholar
  46. Lindsay, W. L. (1979). Chemical equilibria in soils. New York: Wiley.Google Scholar
  47. Ma, Q. Y., Traina, S. J., Logan, T. J., & Ryan, J. A. (1993). In situ lead immobilization by apatite. Environmental Science and Technology, 27, 1803–1810.CrossRefGoogle Scholar
  48. Ma, Q. Y., Logan, T. J., & Traina, S. J. (1995). Lead immobilization from aqueous solutions and contaminated soils using phosphate rock. Environmental Science and Technology, 29, 1118–1126.CrossRefGoogle Scholar
  49. Madrid, F., Diaz-Barrientos, E., & Madrid, L. (2008). Availability and bio-accessibility of metals in the clay fraction of urban soils of Sevilla. Environmental Pollution, 156, 605–610.CrossRefGoogle Scholar
  50. Mahanta, M. J., & Bhattacharyya, K. G. (2011). Total concentrations, fractionation and mobility of heavy metals in soils of urban area of Guwahati, India. Environmental Monitoring and Assessment, 173, 221–240.CrossRefGoogle Scholar
  51. Maier, R. M., Pepper, I. L., & Gerba, C. P. (2000). Environmental microbiology (p. 585). New York: Academic.Google Scholar
  52. Malik, R. N., Jadoon, W. A., & Husain, S. Z. (2010). Metal contamination of surface soils of industrial city Sialkot, Pakistan: a multivariate and GIS approach. Environmental Geochemistry and Health, 32, 179–191.CrossRefGoogle Scholar
  53. Marin, M. S. (2007). Geochemical forms of lead and bio-uptake by earthworms in contaminated urban soils (p. 102). Detroit, MI: PhD dissertation, Dept. of Civil and Environmental Engineering, Wayne State University.Google Scholar
  54. McBride, M. B. (1979). Chemisorption and precipitation of Mn2+ at CaCO3 surfaces. Soil Science Society of America Journal, 43, 693–698.CrossRefGoogle Scholar
  55. McBride, M., Sauve, S., & Hendershot, W. (1997). Solubility control of Cu, Zn, Cd, and Pb in contaminated soils. European Journal of Soil Science, 48, 337–346.CrossRefGoogle Scholar
  56. Mehra, O. P., & Jackson, M. L. (1960). Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Clays and Clay Minerals, 7, 317–327.CrossRefGoogle Scholar
  57. Mielke, H. W., Gonzales, C. R., Powell, E., Jartun, M., & Mielke, P. W. (2007). Nonlinear association between soil lead and blood lead of children in metropolitan New Orleans, Louisiana: 2000–2005. Science of the Total Environment, 388, 43–53.CrossRefGoogle Scholar
  58. Miller, W. P., Martens, D. C., & Zelazny, L. W. (1986). Effect of sequence in extraction of trace metals from soils. Soil Science Society American Journal, 50, 598–601.CrossRefGoogle Scholar
  59. Morgan, J. E., & Morgan, A. J. (1988). Earthworms as biological monitors of cadmium, copper, lead and zinc in metalliferous soils. Environmental Pollution, 54, 123–138.CrossRefGoogle Scholar
  60. Nahmani, J., Hodson, M. E., & Black, S. (2007). A review of studies performed to assess metal uptake by earthworms. Environmental Pollution, 145, 163–179.CrossRefGoogle Scholar
  61. NIST. (2008). Standard Reference Material 2585: trace elements in soil containing lead from paint. Gaithersburg: National Institute of Standards & Technology.Google Scholar
  62. Olsen, K. W., & Skogerboe, R. K. (1975). Identification of soil lead compounds from automotive sources. Environmental Science and Technology, 9, 227–230.CrossRefGoogle Scholar
  63. Raksasataya, M., Langdon, A. G., & Kim, N. D. (1997). Inhibition of Pb redistribution by two complexing agents (cryptand and NTA) during sequential extraction analysis. Analytica Chimica Acta, 347, 313–323.CrossRefGoogle Scholar
  64. Reesman, A. L. (1974). Aqueous dissolution studies of illite under ambient conditions. Clays and Clay Minerals, 22, 443–454.CrossRefGoogle Scholar
  65. Rodriguez, R. R., Basta, N. T., Casteel, S. W., Armstrong, F. P., & Ward, D. C. (1999). An in vitro method to estimate bioavailable arsenic in contaminated soils and solid media. Environmental Science and Technology, 33, 642–649.CrossRefGoogle Scholar
  66. Ruby, M. V., Davis, A., Link, T. E., et al. (1993). Development of an in vitro screening test to evaluate the in vivo bioaccessibility of ingested mine-waste lead. Environmental Science and Technology, 27, 2870–2877.CrossRefGoogle Scholar
  67. Ruby, M. V., Davis, A., & Nicholson, A. (1994). In situ formation of Pb phosphates in soils as a method to immobilize Pb. Environmental Science and Technology, 28, 646–654.CrossRefGoogle Scholar
  68. Ruby, M. V., Davis, A., Schoof, R., Eberle, S., & Sellstone, C. M. (1996). Estimation of bioavailability using a physiologically based extraction test. Environmental Science and Technology, 30, 422–430.CrossRefGoogle Scholar
  69. Ruby, M. V., Schoof, R., Brattin, W., Goldade, M., Post, G., Harnois, M., et al. (1999). Advances in evaluating the oral bioavailability of inorganics in soil for use in human health risk assessment. Environmental Science and Technology, 33, 3697–3705.Google Scholar
  70. Ruiz, E., Alonso-Azcarate, J., & Rodriguez, L. (2011). Lumbricus terrestris L. activity increases the bioavailability of metals and their accumulation in maize and barley. Environmental Pollution, 159, 722–728.CrossRefGoogle Scholar
  71. Ruiz-Cortes, E., Reinoso, R., Diaz-Barrientos, E., & Madrid, L. (2005). Concentrations of potentially toxic metals in urban soils of Seville: relationship with different lands uses. Environmental Geochemistry and Health, 27, 465–474.CrossRefGoogle Scholar
  72. Scheetz, C. D. (2004). Distribution, transport, and fate of lead on shooting ranges (p. 47). Blacksburg, Va: M.S. thesis, Dept. of Geological Sciences, Virginia Polytechnic Institute and State University.Google Scholar
  73. Schnitzer, M., & Skinner, S. I. M. (1967). Organo-metallic interactions in soils. 5. Stability constants of Pb, Ni, Mn, Co, Ca, and Mg fulvic acid complexes. Soil Science, 103, 247–252.CrossRefGoogle Scholar
  74. Schwertmann, U., & Cornell, R. M. (2000). Iron oxides in the laboratory: preparation and characterization (2nd ed.). Weinheim: Wiley-VCH VerlagGmbH.CrossRefGoogle Scholar
  75. Schwertmann, U., & Taylor, R. M. (1977). Iron oxides. In J. B. Dixon & S. B. Reed (Eds.), Minerals in soil environments (pp. 145–180). Madison: Soil Science Society of America.Google Scholar
  76. Singer, M. J., and Janitzky, P. (1986) Field and laboratory procedures used in a soil chronosequence study. U.S. Geological Survey Bull. 1648, 49 pp.Google Scholar
  77. Sizmur, T., & Hodson, M. E. (2009). Do earthworms impact metal mobility and availability in soil?—a review. Environmental Pollution, 157, 1981–1989.CrossRefGoogle Scholar
  78. Sizmur, T., Palumbo-Roe, B., Watts, M. J., & Hodson, M. E. (2011). Impact of earthworm Lumbricus terrestris (L.) on As, Cu, Pb and Zn mobility and speciation in contaminated soils. Environmental Pollution, 159, 742–748.CrossRefGoogle Scholar
  79. Soil Survey Staff. (2010a). Soil survey manual. Washington, DC: USDA-NRCS, U.S. Govt. Print. Office.Google Scholar
  80. Soil Survey Staff. (2010b). Keys to soil taxonomy (11th ed.). Washington, DC: USDA-NRCS, U.S. Govt. Print. Office.Google Scholar
  81. Stevenson, F. J. (1982). Humus chemistry: genesis, composition, reactions. New York: Wiley.Google Scholar
  82. Tack, F. M. G. (2010). Trace elements: general chemistry, principles and processes. In P. S. Hooda (Ed.), Trace elements in soils (pp. 9–37). West Sussex: Wiley.CrossRefGoogle Scholar
  83. Tessier, A., Campbell, P. G. C., & Bisson, M. (1979). Sequential extraction procedure for the speciation of trace metals. Analytical Chemistry, 51, 844–851.CrossRefGoogle Scholar
  84. Thums, C. R., Farago, M. E., & Thornton, I. (2008). Bioavailability of trace metals in brownfield soils in an urban area in the UK. Environmental Geochemistry and Health, 30, 549–563.CrossRefGoogle Scholar
  85. Udovic, M., & Lestan, D. (2007). The effect of earthworms on the fractionation and bioavailability of heavy metals before and after soil remediation. Environmental Pollution, 148, 663–668.CrossRefGoogle Scholar
  86. USEPA (2007a) Estimation of relative bioavailability of lead in soil and soil-like materials using in vivo and in vitro methods. OSWER 9285.7-77, 23 pp.Google Scholar
  87. USEPA. (2007b). Method 3051A—microwave assisted acid digestion of sediments, sludges, soils, and oils. Washington, D.C.: U.S. Environmental Protection Agency.Google Scholar
  88. Zahran, S., Laidlaw, M. A. S., McElmurry, S. P., Filippelli, G. M., & Taylor, M. (2013). Linking source and effect: resuspended soil lead, air lead, and children’s blood lead levels in Detroit, Michigan. Environmental Science and Technology, 47, 2839–2845.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Jeffrey L. Howard
    • 1
    Email author
  • Brian R. Dubay
    • 1
  • Shawn P. McElmurry
    • 2
  • Josiah Clemence
    • 2
  • W. Lee Daniels
    • 3
  1. 1.Department of GeologyWayne State UniversityDetroitUSA
  2. 2.Department of Civil and Environmental EngineeringWayne State UniversityDetroitUSA
  3. 3.Department of Crop and Soil Environmental SciencesVirginia Polytechnic Institute and State UniversityBlacksburgUSA

Personalised recommendations