Impact of Alkalisation of the Soil on the Anatomy of Norway Spruce (Picea abies) Needles

  • Aljona Lukjanova
  • Malle Mandre
  • Gerly Saarman


In this study, we evaluated the needle anatomy of Norway spruce trees growing on a territory that was exposed to different alkaline dust pollution. The anatomy of the needles of spruce growing on a polluted site in the vicinity of the Kunda cement plant (Northeast Estonia) was compared with the anatomy and physiological state of the needles from an unpolluted site. The needles from polluted sites had a significantly larger average mesophyll area and thicker epidermis. These needles also had significantly smaller average vascular bundles and xylem areas than needles from the unpolluted site. Although in the alkalised growth conditions, the mesophyll area enlarged, the number of damaged mesophyll cells increased, and as a result, the concentration of chlorophylls decreased reducing the photosynthetic potential of trees. Our study indicates that even though cement dust pollution has practically ceased in the area, the alkalised soil is affecting physiological processes in trees for a long time.


Norway spruce Needle anatomy Alkalisation Pigments Lignification 



This research was supported by the Estonian Ministry of Education and Research (project no. 0170021 s08), Kunda Nordic Cement (contract 21.05.2010) and by the European Regional Development Fund, Environmental Conservation and Environmental Technology R&D Programme project BioAtmos (3.2.0802.11-0043).


  1. Albrechtová, J., Janáček, J., Lhotáková, Z., Radochová, B., & Kubinová, L. (2007). Novel efficient methods for measuring mesophyll anatomical characteristics from fresh thick sections using stereology and confocal microscopy: application on acid rain-treated Norway spruce needles. Journal of Experimental Botany, 58(6), 1451–1461.CrossRefGoogle Scholar
  2. Apple, M., Tiekotter, K., Snow, M., Young, J., Soeldner, A., Phillips, D., et al. (2002). Needle anatomy changes with increasing tree age in Douglas-fir. Tree Physiology, 22(2–3), 129–136.CrossRefGoogle Scholar
  3. Campbell, M. M., & Sederoff, R. R. (1996). Variation of lignin content and composition. Mechanism of control and implications for the genetic improvement of plants. Plant Physiology, 110(1), 3–13.Google Scholar
  4. Cesar, V., & Lepeduš, H. (2001). Peroxidase activity, soluble proteins and chlorophyll content in spruce (Picea abies L. Karst.) needles affected by cement dust. Acta Botanica Croatica, 60(2), 227–235.Google Scholar
  5. Farmer, A. M. (1993). The effects of dust on vegetation—a review. Environmental Pollution, 79(1), 63–75.CrossRefGoogle Scholar
  6. Fink, S. (1991). Structural changes in conifer needles due to Mg and K deficiency. Fertilizer Research, 27(1), 23–27.CrossRefGoogle Scholar
  7. Forczek, S. T., Benada, O., Kofroňová, O., Sigler, K., & Matucha, M. (2011). Influence of road salting on the adjacent Norway spruce (Picea abies) forest. Plant, Soil and Environment, 57(7), 344–350.Google Scholar
  8. Gebauer, R., Volařik, D., Urban, J., Børja, I., Nagy, N. E., Eldhuset, T. D., et al. (2011). Effect of thinning on anatomical adaptation of Norway spruce needles. Tree Physiology, 31(10), 1103–1113.CrossRefGoogle Scholar
  9. Gebauer, R., Volařík, D., Urban, J., Børja, I., Nagy, N. E., Eldhuset, T. D., et al. (2012). Effects of different light conditions on the xylem structure of Norway spruce needles. Trees—structure and function, 26(4), 1079–1089.CrossRefGoogle Scholar
  10. Gobran, G. R., & Clegg, S. (1996). A conceptual model for nutrient availability in the mineral soil–root system. Canadian Journal of Soil Science, 76(2), 125–131.CrossRefGoogle Scholar
  11. Godde, D., Divoux, S., Höfert, M., Klein, C., & Gonsior, B. (1991). Quantitative and localized element analysis in cross-sections of spruce [Picea abies (L.) Karst.] needles with different degrees of damage. Trees—structure and function, 5(2), 95–100.Google Scholar
  12. Gostin, I. (2010). Structural changes in silver fir needles in response to air pollution. Analele Universitatii din Oradea, Fascicula Biologie, 17(2), 300–305.Google Scholar
  13. Hatfield, R., & Vermerris, W. (2001). Lignin formation in plant. The dilemma of linkage specificity. Plant Physiology, 126(4), 1351–1357.CrossRefGoogle Scholar
  14. Havas, P., & Huttunen, S. (1972). The effect of air pollution on the radial growth of Scots pine (Pinus sylvestris L.). Biological Conservation, 4(5), 361–368.CrossRefGoogle Scholar
  15. Huttunen, S., & Manninen, S. (2005). Scots pine and the changing environment—needle responses. Polish Botanical Studies, 19, 133–141.Google Scholar
  16. Jätkusuutlikkuse aruanne (2007). Kunda Nordic Heidelberg Cement Croup. Accessed 12 November 2012.
  17. Jokela, A., Sarjala, T., Kaunisto, S., & Huttunen, S. (1997). Effects of foliar potassium concentration on morphology, ultrastructure and polyamine concentrations of Scots pine needles. Tree Physiology, 17(11), 677–685.CrossRefGoogle Scholar
  18. Kaasik, M., Alliksaar, T., Ivask, J., & Loosaar, J. (2005). Spherical fly ash particles from oil shale fired power plants in atmospheric precipitations. Possibilities of quantitative tracing. Oil Shale, 22(4), 547–561.Google Scholar
  19. Karolewski, P., Giertych, M. J., Oleksyn, J., & Žytkowiak, R. (2005). Differential reaction of Pinus sylvestris, Quercus robur and Q. petraea trees to nitrogen and sulfur pollution. Water, Air, and Soil Pollution, 160(1–4), 95–108.CrossRefGoogle Scholar
  20. Kask, R., Ots, K., Mandre, M., & Pikk, J. (2008). Scots pine (Pinus sylvestris L.) wood properties in an alkaline air pollution environment. Trees—structure and function, 22(6), 815–823.CrossRefGoogle Scholar
  21. Klõšeiko, J. (2005). Concentration of carbohydrates in conifer needles near Kunda cement plant, Estonia, nine years after reduced dust pollution. Metsanduslikud Uurimused/Forestry Studies, 42, 87–94.Google Scholar
  22. Lepeduš, H., & Cesar, V. (2004). Biochemical and anatomical changes of spruce needles exposed to urban dust pollution. Acta Botanica Hungarica, 46(1–2), 201–210.CrossRefGoogle Scholar
  23. Liblik, V., Pensa, M., & Kundel, H. (2000). Temporal changes in atmospheric air pollution in industrial areas of Ida- and Lääne-Viru counties. Metsanduslikud Uurimused/Forestry Studies, 33, 17–36.Google Scholar
  24. Lichtenthaler, H. K., & Wellburn, A. R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 11(5), 591–592.Google Scholar
  25. Lin, J., Jach, M. E., & Ceulemans, R. (2001). Stomata density and needle anatomy of Scots pine (Pinus sylvestris) are affected by elevated CO2. New Phytologist, 150(3), 665–674.CrossRefGoogle Scholar
  26. Lukjanova, A., & Mandre, M. (2010). Effects of alkalization of the environment on the anatomy of Scots pine (Pinus sylvestris) needles. Water, Air, and Soil Pollution, 206(1–4), 13–22.CrossRefGoogle Scholar
  27. Luomala, E.-M., Laitinen, K., Sutinen, S., Kellomäki, S., & Vapaavuori, E. (2005). Stomatal density, anatomy and nutrient concentrations of Scots pine needles are affected by elevated CO2 and temperature. Plant, Cell & Environment, 28(6), 733–749.CrossRefGoogle Scholar
  28. Maier-Maercker, U. (1998). Image analysis of the stomatal cell walls of Picea abies (L.) Karst. in pure and ozone-enriched air. Trees—structure and function, 12(3), 181–185.Google Scholar
  29. Makoto, K., & Koike, T. (2007). Effects of nitrogen supply on photosynthetic and anatomical changes in current-year needles of Pinus koraiensis seedlings grown under two irradiances. Photosynthetica, 45(1), 99–104.CrossRefGoogle Scholar
  30. Mandre, M. (1995). Changes in the nutrient composition of trees. In M. Mandre (Ed.), Dust pollution and forest ecosystems. A study of conifers in an alkalized environment. Publication 3 (pp. 44–65). Tallinn: Institute of Ecology.Google Scholar
  31. Mandre, M. (2000). Changes in forest ecosystems of Viru county influenced by industrial air pollution. Metsanduslikud Uurimused/Forestry Studies, 33, 37–64.Google Scholar
  32. Mandre, M. (2002a). Stress concepts and plants. Metsanduslikud Uurimused/Forestry Studies, 36, 9–16.Google Scholar
  33. Mandre, M. (2002b). Stress induced changes in the lignin content of the needles of Norway spruce and Scots pine. Metsanduslikud Uurimused/Forestry Studies, 36, 72–81.Google Scholar
  34. Mandre, M. (2009). Vertical gradients of mineral elements in Pinus sylvestris crown in alkalised soil. Environmental Monitoring and Assessment, 159(1–4), 111–124.CrossRefGoogle Scholar
  35. Mandre, M., & Korsjukov, R. (2007). The quality of stemwood of Pinus sylvestris in an alkalised environment. Water, Air, and Soil Pollution, 182(1–4), 163–172.CrossRefGoogle Scholar
  36. Mandre, M., & Lukjanova, A. (2008). Anatomical structure and localisation of lignin in needles and shoots of Scots pine (Pinus sylvestris L.) growing in a habitat with varying environmental characteristics. Metsanduslikud Uurimused/Forestry Studies, 49, 37–46.Google Scholar
  37. Mandre, M., & Lukjanova, A. (2011). Biochemical and structural characteristics of Scots pine (Pinus sylvestris L.) in an alkaline environment. Estonian Journal of Ecology, 60(4), 264–283.CrossRefGoogle Scholar
  38. Mandre, M., Rauk, J., & Ots, K. (1995). In M. Mandre (Ed.), Dust pollution and forest ecosystems. A study of conifers in an alkalized environment. Publication 3 (pp. 112–116). Tallinn: Institute of Ecology.Google Scholar
  39. Mandre, M., Bogdanov, V., & Rahi, M. (2002). Impact of alkaline air pollution and alkalisation of the environment on the structure and quantity of epicuticular waxes on needles of Picea abies. Metsanduslikud Uurimused/Forestry Studies, 36, 107–119.Google Scholar
  40. Mandre, M., Kiviste, A., & Köster, K. (2011). Environmental stress and forest ecosystem. Forest Ecology and Management, 262(2), 53–55.CrossRefGoogle Scholar
  41. Mandre, M., Tuju, K.-L., Pärn, H., Pikk, J., Paasrand, K., & Kört, M. (2012). Variation in the morphological structure of the crown of Norway spruce in North Estonian alkalised soil. Forest Ecology and Management, 278, 9–16.CrossRefGoogle Scholar
  42. Marco, H. F. (1939). The anatomy of spruce needles. Journal of Agricultural Research, 58(5), 357–368.Google Scholar
  43. Marin, M., Koko, V., Duletić-Laušević, S., & Marin, P. D. (2009). Effects of air pollution on needles of Cedrus atlantica (Endl.) Carriere in industrial area of Pančevo (Serbia). Botanica Serbica, 33(1), 69–73.Google Scholar
  44. Miksche, G. E., & Yasuda, S. (1977). About the lignin of the leaves and needles of some angiosperm and gymnosperm (Über die Lignine der Blätter und Nadeln einiger Angiospermen and Gymnospermen). Holzforschung, 31(2), 57–59.CrossRefGoogle Scholar
  45. Moura, J. C. M. S., Bonine, C. A. V., Viana, J. O. F., Dornelas, M. C., & Mazzafera, P. (2010). Abiotic and biotic stresses and changes in the lignin content and composition in plants. Journal of Integrative Plant Biology, 52(4), 360–376.CrossRefGoogle Scholar
  46. Niinemets, Ü., Lukjanova, A., Turnbull, M. H., & Sparrow, A. D. (2007). Plasticity in mesophyll volume fraction modulates light-acclimation in needle photosynthesis in two pines. Tree Physiology, 27(8), 1137–1151.CrossRefGoogle Scholar
  47. Ots, K., & Rauk, J. (2000). Defoliation of conifers in the North Estonian industrial region. Metsanduslikud Uurimused/Forestry Studies, 33, 98–109.Google Scholar
  48. Pallardy, S. G. (2008). Physiology of woody plants. Amsterdam: Academic.Google Scholar
  49. Pärn, H. (2002). Relationships between radial growth of Scots pine and climate in the north eastern industrial region of Estonia. Metsanduslikud Uurimused/Forestry Studies, 36, 47–61.Google Scholar
  50. Polle, A., Otter, T., & Seifert, F. (1994). Apoplastic peroxidases and lignification in needles of Norway spruce (Picea abies). Plant Physiology, 106(1), 53–60.Google Scholar
  51. Rauk, J. (1995). Radial increment of trees. In M. Mandre (Ed.), Dust pollution and forest ecosystems. A study of conifers in an alkalized environment. Publication 3 (pp. 112–116). Tallinn: Institute of Ecology.Google Scholar
  52. Ruzin, S. E. (1999). Plant microtechnique and microscopy (p. 322). New York, Oxford: Oxford University Press.Google Scholar
  53. Skuodienė, L. (2001). The effect of light stressor on metabolites in the needles of Picea abies (L.) Karst. Baltic Forestry, 7(2), 31–36.Google Scholar
  54. Soukupová, J., Rock, B. N., & Albrechtová, J. (2001). Comparative study of two spruce species in a polluted mountainous region. New Phytologist, 150(1), 133–145.CrossRefGoogle Scholar
  55. Sutinen, S. (1987). Cytology of Norway spruce needles. I. Changes during ageing. European Journal of Forest Pathology, 17(2), 65–73.CrossRefGoogle Scholar
  56. Sutinen, S., & Koivisto, L. (1995). Microscopic structure of conifer needles as a diagnostic tool in the field. In M. Munawar, O. Hänninen, S. Roy, N. Munawar, L. Kärenlampi, & D. Brown (Eds.), Bioindicators of environmental health (pp. 73–81). Amsterdam: SPB Academic Publishing.Google Scholar
  57. Sutinen, S., & Saarsalmi, A. (2008). Needle structure in relation to boron fertilization in Picea abies (L.) Karst. stands suffering from growth disturbance. Baltic Forestry, 14(2), 98–102.Google Scholar
  58. Tervahattu, H., Lodenius, M., & Tulisalo, E. (2001). Effects of the reduction of cement plant pollution on the foliar and bark chemical composition of Scots pine. Boreal Environment Research, 6(4), 251–259.Google Scholar
  59. Vernon, L. P. (1960). Spectrophotometric determination of chlorophylls and pheophytins in plant extracts. Analytical Chemistry, 32(9), 1144–1150.CrossRefGoogle Scholar
  60. Walles, B., Nyman, B., & Aldén, T. (1973). On the ultrastructure of needles of Pinus sylvestris L. Studia Forestalia Suecica, 106, 1–26.Google Scholar
  61. Wieser, G., Tegischer, K., Tausz, M., Haberle, K. H., Grams, T. E. E., & Matyssek, R. (2002). Age effects on Norway spruce (Picea abies) susceptibility to ozone uptake: a novel approach relating stress avoidance to defense. Tree Physiology, 22(8), 583–590.CrossRefGoogle Scholar
  62. Ziegler, H. (1997). Some open questions in tree physiology. In H. Rennenberg, W. Eschrich, & H. Ziegler (Eds.), Trees —contributions to modern tree physiology (pp. 531–544). Leiden: Backhuys Publishers.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Ecophysiology, Institute of Forestry and Rural EngineeringEstonian University of Life SciencesTallinnEstonia
  2. 2.Department of Chemistry, Faculty of ScienceTallinn University of TechnologyTallinnEstonia

Personalised recommendations