Acute Toxicity of Copper Sulfate and Potassium Dichromate on Stygobiont Proasellus: General Aspects of Groundwater Ecotoxicology and Future Perspectives

  • Ana Sofia P. S. ReboleiraEmail author
  • Nelson Abrantes
  • Pedro Oromí
  • Fernando Gonçalves


Karst systems harbor large groundwater resources for human consumption and represent an important habitat for rare and unprotected specialized animals, the so-called stygofauna. Due to the highly adapted features towards underground life, together with the geographic isolation provided by the subterranean aquifers, groundwater-dwelling animals may lose the ability to face sudden changes on their ecosystems, and therefore the risk of extinction is remarkably high. A little is known about their sensitiveness, especially linked to contamination pressure in urbanized karst areas. Understanding the impact of contaminants on stygofauna is important for setting groundwater environmental quality and management of karst systems. We have investigated acute toxicity responses in two endemic stygobiont species of the peri-Mediterranean genus Proasellus from two different karst areas and in freshwater standard species Daphnia magna exposed to two contaminants (copper sulfate; potassium dichromate). Groundwater from both sites was characterized in order to depict possible responses resulting from the long-term exposition of organisms to contaminants. Stygobiont Proasellus spp. were remarkably more tolerant than the epigean D. magna. The less groundwater-adapted revealed to be more tolerant to acute exposure to both toxics, suggesting that the degree of adaptation to groundwater life can influence the acute response of Proasellus spp. to pollutants, and that the tolerance to wide environmental conditions could be a key factor in groundwater colonization. This study highlights the worldwide need to use local specimens to infer the effects of pollution in their corresponding karst systems, which is important to define specific environmental quality thresholds for groundwater ecosystems that will certainly contribute for its protection.


Contamination Acute toxicity Stygobiont Proasellus Karst Portugal 



The authors acknowledge NEUA for lending the caving equipment, DIR-SPE and P. Robalo for the kind help in the cave-dive sampling and to PNSAC/ICNB for the logistic support in the fieldwork. We also express our gratitude for the taxonomical support to Dr. Florian Malard and Dr. Damià Jaume. The Portuguese Foundation for Science and Technology financed this work within the framework of KARSTRISK project (PTDC/AAC-AMB/114781/2009); ASPSR by means of a PhD grant (SFRH/BD/45744/2008) and NA by means of a post-doc grant (SFRH/BPD/35665/2007). All specimens from the field were collected under the legal permit of Instituto da Conservação e da Biodiversidade.


  1. Afonso, O. (1987). Contribuition pour la connaissance des rapports entre la qualité de l’eau phréatique et les communautés d’Asellides (Crustacea, Isopoda, Asellota). Publicações do Instituto de Zoologia "Dr. Augusto Nobre", 198, 1–61.Google Scholar
  2. Afonso, O. (1988). Isopoda Asellidae e Amphipoda da Gruta da Assafora (Portugal) — Descrição de Proasellus assaforensis sp. n. Algar, 2, 42–51.Google Scholar
  3. Afonso, O. (1992). Aselídeos (Crustacea, Isopoda) nas águas subterrâneas portuguesas. Aspectos taxonómicos, bio-geográficos e ecológicos. Algar, 3, 49–56.Google Scholar
  4. Agra, A., Guilhermino, L., Soares, A., & Barata, C. (2010). Genetic costs of tolerance to metals in Daphnia longispina populations historically exposed to a copper mine drainage. Environmental Toxicology, 29, 939–946.CrossRefGoogle Scholar
  5. [ASTM] American Society for Testing and Materials. (1980). Standard practice for conducting acute toxicity tests with fishes, macroinvertebrates and amphibians. Report E-729-80. Philadelphia: ASTM.Google Scholar
  6. Baird, D. J., Barber, I., Bradley, M. C., Calow, P., & Soares, A. M. V. M. (1989a). The Daphnia bioassay: a critique. Hydrobiologia, 188(189), 403–406.CrossRefGoogle Scholar
  7. Baird, D.J., Soares, A.M.V.M., Girling, A., Barber, I., Bradley, M.C. & Calow, P. (1989b). The long-term maintenance of Daphnia magna Straus for use in ecotoxicity tests: problems and prospects. In H. Lokke, H. Tyle, F. Bro-Rasmussen (Eds.), Proceedings of the First European Conference on Ecotoxicology. Lyngby, p. 144.Google Scholar
  8. Bosnak, A. D., & Morgan, E. L. (1981a). Acute toxicity of cadmium, zinc and total residual chlorine to epigean and hypogean isopods (Asellidae). The NSS Bulletin, 43, 12–18.Google Scholar
  9. Bosnak, A. D., & Morgan, E. L. (1981b). Comparison of acute toxicity for Cd, Cr and Cu between two distinct populations of aquatic hypogean isopods. Proceedings of the 8th International Congress of Speleology, 1, 72–74.Google Scholar
  10. Brancelj, A., & Dumont, H. J. (2007). A review of the diversity, adaptations and groundwater colonization pathways in Cladocera and Calanoida (Crustacea), two rare and contrasting groups of stygobionts. Fundamental and Applied Limnology, 168(1), 3–17.CrossRefGoogle Scholar
  11. Canivet, V., & Gibert, J. (2002). Sensitivity of epigean and hypogean freshwater macroinvertebrates to complex mixtures. Part I: laboratory experiments. Chemosphere, 46(7), 999–1009.CrossRefGoogle Scholar
  12. Canivet, V., Chambon, P., & Gibert, J. (2001). Toxicity and bioaccumulation of arsenic and chromium in epigean and hypogean freshwater macroinvertebrates. Archives of Environmental Contamination and Toxicology, 40(3), 345–354.CrossRefGoogle Scholar
  13. Chapman, P. M. (2000). Whole effluent toxicity testing—usefulness, level of protection, and risk assessment. Environmental Toxicology and Chemistry, 19(1), 3–13.Google Scholar
  14. Danielopol, D. L., Griebler, C., Gunatilaka, A., & Notenboom, J. (2003). Present state and future prospects for groundwater ecosystems. Environmental Conservation, 30, 104–130.CrossRefGoogle Scholar
  15. Danielopol, D. L., Gibert, J., Griebler, C., Gunatilaka, A., Hahn, H. J., Messana, G., et al. (2004). The importance of incorporating ecological perspectives in groundwater management policy. Environmental Conservation, 31(3), 185–189.CrossRefGoogle Scholar
  16. Danielopol, D.L., Griebler, C., Gunatilaka, A., Hahn, H.J., Gibert, J., Mermillod-Blondin, G., Messana, G., Notenboom, J., Sket, B. (2008). Incorporation of groundwater ecology in environmental policy. In: P. Quevauviller (Ed.) (p 671–689) London: The Royal Society of Chemistry RSC PublishingGoogle Scholar
  17. de Nicola Giudici, M., Migliore, L., & Guarino, S. M. (1986). Effects of cadmium on the biological cycle of Asellus aquaticus and Proasellus coxalis. Environmental Technology Letters, 7, 45–54.CrossRefGoogle Scholar
  18. European Commission. (2008). Directive 2008/105/EC of the European Parliament and of the council of 16 December 2008 on environmental quality standards in the field of water policy, amending and subsequently repealing Council Directives 82/176/EEC, 83/513/EEC, 84/156/EEC, 84/491/EEC, 86/280/EEC and amending Directive 2000/60/EC of the European Parliament and of the Council.Google Scholar
  19. Finney, D. J. (1971). Probit analysis (3rd ed.). Cambridge: Cambridge University Press.Google Scholar
  20. Ford, D., & Williams, P. (2007). Karst hydrogeology and geomorphology. West Sussex: Wiley.Google Scholar
  21. Gibert, J., & Culver, D. C. (2009). Assessing and conserving groundwater biodiversity: and introduction. Freshwater Biology, 54, 639–648.CrossRefGoogle Scholar
  22. Gibert, J., & Dehrveng, L. (2002). Subterranean ecosystems: a truncated functional biodiversity. Bioscience, 52, 473–481.CrossRefGoogle Scholar
  23. Gibert, J., Danielopol, D. L., & Stanford, J. A. (1994). Groundwater ecology. San Diego: Academic.Google Scholar
  24. Giudici, M. N., Migliore, L., & Guarino, S. M. (1987). Sensitivity of Asellus aquaticus (L.) and Proasellus coxalis Dollf. (Crustacea, Isopoda) to Copper. Hydrobiologia, 146(1), 63–69.CrossRefGoogle Scholar
  25. Gopi, S., Ayyappan, G., Chandrasehar, K., Krishna, V., & Goparaju, A. (2012). Effect of potassium dichromate on the survival and reproduction of Daphnia magna. Bulletin of Environment, Pharmacology and Life Sciences, 1(7), 89–94.Google Scholar
  26. Gunn, J. (2004). Encyclopedia of cave and karst science. New York: Taylor & Francis.Google Scholar
  27. Hahn, H. J. (2006). The GW-Fauna-Index: a first approach to a quantitative ecological assessment of groundwater habitats. Limnologica, 36, 119–137.CrossRefGoogle Scholar
  28. Hahn, H. J. (2009). A proposal for an extended typology of groundwater habitats. Hydrogeology Journal, 17, 77–81.CrossRefGoogle Scholar
  29. Hidding, B., Michel, E., Natyaganova, A. V., & Sherbakov, D. Y. U. (2003). Molecular evidence reveals a polyphyletic origin and chromosomal speciation of Lake Baikal’s endemic asellid isopods. Molecular Ecology, 12, 1509–1514.CrossRefGoogle Scholar
  30. Hose, G. C. (2005). Assessing the need for groundwater quality guidelines for pesticides using the species sensitivity distribution approach. Human and Ecological Risk Assessment, 11, 951–966.CrossRefGoogle Scholar
  31. Howarth, F. G. (1983). Ecology of cave arthropods. Annual Review of Entomology, 28, 365–389.CrossRefGoogle Scholar
  32. Howarth, F. G. (1993). High-stress subterranean habitats and evolutionary change in cave-inhabiting arthropods. American Naturalist, 142, 65–77.CrossRefGoogle Scholar
  33. Hüppop, K. (2005). Adaptation to low food. In D. C. Culver & W. B. White (Eds.), Encyclopedia of caves (pp. 4–10). Amsterdam: Elsevier.Google Scholar
  34. Lilius, H., Hästbacka, T., & Isomaa, B. (1995). A comparison of the toxicity of 30 reference chemicals to Daphnia magna and Daphnia pulex. Environmental Toxicology and Chemistry, 14, 2085–2088.Google Scholar
  35. Magniez, G. (1967). Geographic distribution and validity of the troglobe species Asellus lusitanicus Frade (Asellote Crustacean). International Journal of Speleology, 2(4), 315–317.CrossRefGoogle Scholar
  36. Malard, F., Plenet, S., & Gibert, J. (1996). The use of invertebrates in ground water monitoring: a rising research field. Ground Water Monitoring and Remediation, 16, 103–113.CrossRefGoogle Scholar
  37. Martins, A. F. (1949). Maciço Calcário Estremenho: contribuição para um estudo de geografia física. Coimbra: Coimbra Editora.Google Scholar
  38. Mathews, R. C., Bosnak, A. D., Tennant, D. S., & Morgan, E. L. (1977). Mortality curves of blind cave crayfish (Orconectes australis australis) exposed to chlorinated stream water. Hydrobiologia, 53(2), 107–111.CrossRefGoogle Scholar
  39. Meinel, W., & Krause, R. (1988). Zur Korrelation zwischen Zink und verschiedenen pH-werten in ihrer toxischen Wirkung auf einige Grundwasser-Organismen. Zeitschrift fuer Angewandte Zoologie, 75, 159–182.Google Scholar
  40. Meinel, W., Krause, R., & Musko, J. (1989). Experimente zur pH-Wert-Abhangigen Toxizitat von Kadmium bei einigen Grundwasserorganismen. Zeitschrift fuer Angewandte Zoologie, 76, 101–125.Google Scholar
  41. Ministério do Ambiente. (1998). Decreto-Lei nº 236/98 de 1 de Agosto. Diário da República, I Série-A, nº 176, 3676–3722.Google Scholar
  42. Mosslacher, F. (2000). Sensitivity of groundwater and surface water crustaceans to chemical pollutants and hypoxia: implications for pollution management. Archives of Hydrobiologia, 149(1), 51–66.Google Scholar
  43. Notenboom, J., Cruys, K., Hoekstra, J., & Van Beelen, P. (1992). Effect of ambient oxygen concentration upon the acute toxicity of chlorophenols and heavy metals to the groundwater copepod Parastenocaris germanica (Crustacea). Ecotoxicology and Environmental Safety, 24, 131–143.CrossRefGoogle Scholar
  44. Notenboom, J., Plenet, S., & Turquin, M. J. (1994). Groundwater contamination and its impact on groundwater animals and ecosystems. In J. Gibert, D. L. Danielopol, & J. A. Stanford (Eds.), Groundwater ecology (pp. 477–504). San Diego: Academic.Google Scholar
  45. OECD. (2004). Daphnia sp., acute immobilization test. Guidelines for testing of chemicals, no. 202. Paris: Organization for Economic Cooperation and Development.CrossRefGoogle Scholar
  46. Pipan, T., & Culver, D. C. (2012). Convergence and divergence in the subterranean realm: a reassessment. Biological Journal of the Linnean Society, 107, 1–14.CrossRefGoogle Scholar
  47. Plénet, S. (1999). Metal accumulation by an epigean and a hypogean freshwater amphipod: considerations for water quality assessment. Water Environment Research, 71, 1298–1309.CrossRefGoogle Scholar
  48. Reboleira, A. S. P. S., Borges, P. A. V., Gonçalves, F., Serrano, A. R. M., & Oromí, P. (2011). The subterranean fauna of a biodiversity hotspot region—Portugal: an overview and its conservation. International Journal of Speleology, 40(1), 21–35.CrossRefGoogle Scholar
  49. Reboleira, A. S. P. S., Gonçalves, F., & Oromí, P. (2013). Literature survey, bibliographic analysis and a taxonomic catalogue of subterranean fauna from Portugal. Subterranean Biology, 10, 51–60.CrossRefGoogle Scholar
  50. Rosenzweig, M. L. (1995). Species diversity in space and time. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  51. Sket, B. (1999). The nature of biodiversity in hypogean waters and how it is endangered. Biodiversity and Conservation, 8, 1319–1338.CrossRefGoogle Scholar
  52. van Hattum, B., van Straalen, N. M., & Govers, H. A. (1996). Trace metals in populations of freshwater isopods: influence of biotic and abiotic variables. Archives of Environmental Contamination and Toxicology, 31(3), 303–318.CrossRefGoogle Scholar
  53. Vesper, D. J. (2012). Contamination of cave waters by heavy metals. In W. White & D. C. Culver (Eds.), Encyclopedia of caves (2nd ed.). USA: Elsevier.Google Scholar
  54. Watson, J., Hamilton-Smith, E., Gillieson, D. & Kiernan, K. (1997). Guidelines for Cave and Karst Protection: IUCN World Commission on Protected Areas. Prepared by the WCPA Working Group on Cave and Karst Protection. IUCN Protected Area Programme Series.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Ana Sofia P. S. Reboleira
    • 1
    • 3
    Email author
  • Nelson Abrantes
    • 2
  • Pedro Oromí
    • 3
  • Fernando Gonçalves
    • 1
  1. 1.Department of Biology and CESAMUniversity of AveiroAveiroPortugal
  2. 2.Department of Environment and Planning and CESAMUniversity of AveiroAveiroPortugal
  3. 3.Departamento de Biología AnimalUniversidad de La LagunaLa LagunaSpain

Personalised recommendations