The Potential of Salvia verbenaca for Phytoremediation of Copper Mine Tailings Amended with Technosol and Compost

  • Luís A. B. Novo
  • Emma F. Covelo
  • Luís González


Unreclaimed mine tailings sites are a worldwide problem. This study evaluates the potential of Salvia verbenaca for phytoremediation of copper mine tailings treated with technosol and compost. Ecophysiological results reveal the species ability to thrive in the assessed range of conditions, while the hydrogen peroxide assays exhibit the plant’s capacity to successfully respond to metal toxicity, supporting literature reports about its antioxidant capabilities. Furthermore, the results suggest a selective antioxidant response of S. verbenaca towards Cd, indicative of a protection mechanism against high concentrations of this element. Moderate concentrations of Cu in the roots, adequate translocation and bioconcentration factors, tolerance to metal toxicity, and ecophysiological characteristics classify S. verbenaca as a promising candidate for phytostabilization of mine tailings. The importance of the amendments in order to improve the overall phytostabilization performance is highlighted by the elevated correlations between the treatment properties and the extractable concentrations of trace metals.


Technosol Compost Salvia Phytoremediation Trace metals Phytostabilization 


  1. Aguilar, J., Dorronsoro, C., Fernández, E., Fernández, J., García, I., Martín, F., et al. (2004). Soil pollution by a pyrite mine spill in Spain: evolution in time. Environmental Pollution, 132, 395–401.CrossRefGoogle Scholar
  2. Alvarenga, P., Palma, P., De Varennes, A., & Cunha-queda, A. C. (2012). A contribution towards the risk assessment of soils from the São Domingos Mine (Portugal): chemical, microbial and ecotoxicological indicators. Environmental Pollution, 161, 50–56.CrossRefGoogle Scholar
  3. Amlinger, F., Götz, B., Dreher, P., Geszti, J., & Weissteiner, C. (2003). Nitrogen in biowaste and yard waste compost: dynamics of mobilisation and availability—a review. European Journal of Soil Biology, 39, 107–116.CrossRefGoogle Scholar
  4. Baker, A. J. M., & Brooks, R. R. (1989). Terrestrial higher plants which hyperaccumulate metallic elements—a review of their distribution, ecology and phytochemistry. Biorecovery, 1, 81–126.Google Scholar
  5. Baker, A. J. M., McGrath, S. P., Sidoli, C. M. D., & Reeves, R. D. (1994). The possibility of in situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants. Resources, Conservation and Recycling, 11, 41–49.CrossRefGoogle Scholar
  6. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.CrossRefGoogle Scholar
  7. Bremner, J. M. (1996). Nitrogen-total. In D. L. Sparks (Ed.), Methods of soil analysis (volume 3) (pp. 1085–1121). Madison: SSSA.Google Scholar
  8. Businelli, D., Massaccesi, L., Said-Pullicino, D., & Gigliotti, G. (2009). Long-term distribution, mobility and plant availability of compost-derived heavy metals in a landfill covering soil. Science of the Total Environment, 407, 1426–1435.CrossRefGoogle Scholar
  9. Cheng, S. (2003). Heavy metals in plants and phytoremediation. Environmental Science and Pollution Research, 10, 335–340.CrossRefGoogle Scholar
  10. Clemente, R., Walker, D. J., Roig, A., & Bernal, M. P. (2003). Heavy metal bioavailability in a soil affected by mineral sulphides contamination following the mine spillage at Aznalcóllar (Spain). Biodegradation, 14, 199–205.CrossRefGoogle Scholar
  11. Cluis, C. (2004). Junk-greedy Greens: phytoremediation as a new option for soil decontamination. BioTeach Journal, 2, 61–67.Google Scholar
  12. Davies, B. E. (1974). Loss-on-ignition as an estimate of soil organic matter. Soil Science Society of America Journal, 38, 150–151.CrossRefGoogle Scholar
  13. FAO. (2006). In IUSS (Ed.), World reference base for soil resources. Rome: ISRIC.Google Scholar
  14. Farrag, K., Senesi, N., Nigro, F., Petrozza, A., Palma, A., Shaarawi, S., et al. (2012). Growth responses of crop and weed species to heavy metals in pot and field experiments. Environmental Science and Pollution Research, 19, 3636–3644.CrossRefGoogle Scholar
  15. Foyer, C. H., Lopez-Delgado, H., Dat, J. F., & Scott, I. M. (1997). Hydrogen peroxide and glutathione-associated mechanisms of acclimatory stress tolerance and signalling. Physiologia Plantarum, 100, 241–254.CrossRefGoogle Scholar
  16. Hasko, A., & Çullaj, A. (2001). Nickel hyper-accumulating species and their potential use for the phyto-remediation of polluted areas. Options Méditerranéennes, 47, 137–150.Google Scholar
  17. Kamatou, G. P. P., Makunga, N. P., Ramogola, W. P. N., & Viljoen, A. M. (2008). South African Salvia species: a review of biological activities and phytochemistry. Journal of Ethnopharmacology, 119, 664–672.CrossRefGoogle Scholar
  18. Karami, N., Clemente, R., Moreno-Jiménez, E., Lepp, N. W., & Beesley, L. (2011). Efficiency of green waste compost and biochar soil amendments for reducing lead and copper mobility and uptake to ryegrass. Journal of Hazardous Materials, 191, 41–48.CrossRefGoogle Scholar
  19. Kayser, A., Wenger, K., Keller, A., Attinger, W., Felix, H. R., Gupta, S. K., et al. (2000). Enhancement of phytoextraction of Zn, Cd, and Cu from calcareous soil: the use of NTA and sulfur amendments. Environmental Science & Technology, 34, 1778–1783.CrossRefGoogle Scholar
  20. Macías, F. V., & Calvo, R. A. (2009). In: X. de Galicia (Ed.), Niveles genéricos de referencia de metales pesados y otros elementos traza en suelos de Galicia (1st ed., pp. 52–136). Santiago de Compostela.Google Scholar
  21. Madejón, E., De Mora, A. P., Felipe, E., Burgos, P., & Cabrera, F. (2006). Soil amendments reduce trace element solubility in a contaminated soil and allow regrowth of natural vegetation. Environmental Pollution, 139, 40–52.CrossRefGoogle Scholar
  22. McGrath, S. P. (1998). Phytoextraction for soil remediation. In R. R. Brooks (Ed.), Plants that hyperaccumulate heavy metals (pp. 261–287). Wallingford: CAB International.Google Scholar
  23. Melgar-Ramírez, R., González, V., Sánchez, J. A., & García, I. (2012). Effects of application of organic and inorganic wastes for restoration of sulphur-mine soil. Water, Air, and Soil Pollution, 223, 6123–6131.CrossRefGoogle Scholar
  24. Mendez, M. O., & Maier, R. M. (2008). Phytostabilization of mine tailings in arid and semiarid environments—an emerging remediation technology. Environmental Health Perspectives, 116, 278–283.CrossRefGoogle Scholar
  25. Moor, C., Lymberopoulou, T. & Dietrich, V. J. (2001). Determination of heavy metals in soils, sediments and geological materials by ICP-AES and ICP-MS. Microchimica Acta, 136, 123–128.Google Scholar
  26. Mossi, A. J., Cansian, R. L., Paroul, N., Toniazzo, G., Oliveira, J. V., Pierozan, M. K., et al. (2011). Morphological characterisation and agronomical parameters of different species of Salvia sp. (Lamiaceae). Brazilian Journal of Biology, 71, 121–129.CrossRefGoogle Scholar
  27. Nagajyoti, P. C., Sreekanth, T. V. M., & Lee, K. D. (2010). Heavy metals, occurrence and toxicity for plants: a review. Environmental Chemistry Letters, 8, 199–216.CrossRefGoogle Scholar
  28. Nanda Kumar, P. B. A., Dushenkov, V., Motto, H., & Raskin, I. (1995). Phytoextraction: the use of plants to remove heavy metals from soils. Environmental Science & Technology, 29, 1232–1238.CrossRefGoogle Scholar
  29. Novo, L. A. B., & González, L. (2013). The effects of variable soil moisture on the phytoextraction of Cd and Zn by Brassica juncea. Fresenius Environmental Bulletin, 22, 299–304.Google Scholar
  30. Palma, J. M., Sandalio, L. M., Corpas, F. J., Romero-puertas, M. C., Mccarthy, I., & Río, L. A. (2002). Plant proteases, protein degradation, and oxidative stress: role of peroxisomes. Plant Physiology and Biochemistry, 40, 521–530.CrossRefGoogle Scholar
  31. Pedrol, N., Puig, C. G., Souza, P., Forján, R., Vega, F. A., Asensio, V., et al. (2010). Soil fertility and spontaneous revegetation in lignite spoil banks under different amendments. Soil & Tillage Research, 110, 134–142.CrossRefGoogle Scholar
  32. Peijnenburg, W. J. G., & Jager, T. (2003). Monitoring approaches to assess bioaccessibility and bioavailability of metals: matrix issues. Ecotoxicology and Environmental Safety, 56, 63–77.CrossRefGoogle Scholar
  33. Prasad, M. N. V., & de Freitas, H. M. O. (2003). Metal hyperaccumulation in plants—biodiversity prospecting for phytoremediation technology. Electronic Journal of Biotechnology, 6, 285–321.CrossRefGoogle Scholar
  34. Quinn, G. P., & Keough, M. J. (2002). Experimental design and data analysis for biologists (p. 556). New York: Cambridge University Press.CrossRefGoogle Scholar
  35. Reid, N. B., & Naeth, M. A. (2005). Establishment of a vegetation cover on tundra kimberlite mine tailings: 2. A Field Study. Restoration Ecology, 13, 602–608.CrossRefGoogle Scholar
  36. Sæbø, A., & Ferrini, F. (2006). The use of compost in urban green areas—a review for practical application. Urban Forestry & Urban Greening, 4, 159–169.CrossRefGoogle Scholar
  37. Sizmur, T., Palumbo-Roe, B., & Hodson, M. E. (2011). Impact of earthworms on trace element solubility in contaminated mine soils amended with green waste compost. Environmental Pollution, 159, 1852–1860.CrossRefGoogle Scholar
  38. Slattery, W., Conyers, M., & Aitken, R. (1999). Soil pH, aluminium, manganese and lime requirement. In K. I. Peverill, L. Sparrow, & D. Reuter (Eds.), Soil analysis: an interpretation manual (pp. 103–125). Victoria: CSIRO.Google Scholar
  39. Soler-Rovira, P., Madejón, E., Madejón, P., & Plaza, C. (2010). In situ remediation of metal-contaminated soils with organic amendments: role of humic acids in copper bioavailability. Chemosphere, 79, 844–849.CrossRefGoogle Scholar
  40. Stancheva, I., Geneva, M., Hristozkova, M., Markovska, Y., & Salamon, I. (2010). Antioxidant capacity of sage grown on heavy metal polluted soil. Russian Journal of Plant Physiology, 57, 799–805.CrossRefGoogle Scholar
  41. Tepe, B. (2008). Antioxidant potentials and rosmarinic acid levels of the methanolic extracts of Salvia virgata (Jacq), Salvia staminea (Montbret & Aucher ex Bentham) and Salvia verbenaca (L.) from Turkey. Bioresource Technology, 99, 1584–1588.CrossRefGoogle Scholar
  42. Vega, F. A., Covelo, E. F., & Andrade, M. L. (2005). Limiting factors for reforestation of mine spoils from Galicia (Spain). Land Degradation & Development, 16, 27–36.CrossRefGoogle Scholar
  43. Vega, F. A., Covelo, E. F., & Andrade, M. L. (2009). Effects of sewage sludge and barley straw treatment on the sorption and retention of Cu, Cd and Pb by coppermine Anthropic Regosols. Journal of Hazardous Materials, 169, 36–45.CrossRefGoogle Scholar
  44. Veihmeyer, F. J., & Hendrickson, A. H. (1931). The moisture equivalent as a measure of the field capacity of soils. Soil Science, 32(3), 181–194.CrossRefGoogle Scholar
  45. Weiersbye, I. M., & Witkowski, E. T. F. (2002). Seed fate and practical germination methods for 46 perennial species that colonize gold mine tailings and acid mine drainage-polluted soils in the grassland biome. In: Proceedings of the 3rd Natural Woodlands and Forests Symposium. Kruger National Park (pp. 221–255).Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Luís A. B. Novo
    • 1
  • Emma F. Covelo
    • 1
  • Luís González
    • 1
  1. 1.Department of Plant Biology and Soil ScienceUniversity of VigoVigoSpain

Personalised recommendations