Aromatic Hydrocarbon Degradation by Halophilic Archaea Isolated from Çamaltı Saltern, Turkey

  • Sevim Feyza Erdoğmuş
  • Burçin Mutlu
  • Safiye Elif Korcan
  • Kıymet Güven
  • Muhsin KonukEmail author


The aims of the present study were to identify the halophilic Archaea that can degrade aromatic hydrocarbons (namely, p-hydroxybenzoic acid, naphthalene, phenanthrene, and pyrene) and to determine their catabolic pathways in the process of degrading the hydrocarbons. It was determined nine archaeal isolates used p-hydroxybenzoic acid, naphthalene, phenanthrene, and pyrene as sole carbon and energy sources. The isolates were identified as Halobacterium piscisalsi, Halorubrum ezzemoulense, Halobacterium salinarium, Haloarcula hispanica, Haloferax sp., Halorubrum sp., and Haloarcula sp. by 16S rRNA gene sequences. Activity of catechol 1,2 dioxygenase and protocatechuate 3,4 dioxygenase enzyme of the ortho cleavage pathway were detected. Determination of the genes of these dioxygenases was also shown. This study clearly demonstrated for the first time that Halorubrum sp. and H. ezzemoulense among the isolates were able to grow at 20 % (w/v) NaCl, utilizing p-hydroxy-benzoic acid, naphthalene, phenanthrene, and pyrene as the sole carbon sources.


Aromatic hydrocarbons Archaea Catechol 1, 2 dioxygenase Protocatechuate 3, 4 dioxygenase 



This study was partly supported by Project Number 071018 of the Anadolu University Research Foundation for the collection and identification of the isolates. Authors also wish to thank to Afyon Kocatepe University Scientific Research Committee for supporting this study financially (10. FENED.11). Our special thanks to Dr. H Shazly from Swansea-UK for editing the English of the paper.


  1. Alexander, M. (1981). Biodegradation of chemicals of environmental concern. Science, 211, 132–138.CrossRefGoogle Scholar
  2. Arulazhagan, P., & Vasudevan, N. (2009). Role of a moderately halophilic bacterial consortium in the biodegradation of polyaromatic hydrocarbons. Marine Pollution Bulletin, 58(2), 256–262.CrossRefGoogle Scholar
  3. Arulazhagan, P., & Vasudevan, N. (2011). Role of nutrients in the utilzation polycyclic aromatic hydrocarbons by halotolerant bacterial strain. Journal of Environmental Science (China), 23(2), 282–287.CrossRefGoogle Scholar
  4. Bertrand, J. C., Almallah, M., Acquaviva, M., & Mille, G. (1990). Biodegradation of hydrocarbons by an extremely halophilic archaebacterium. Letters in Applied Microbiology, 11, 260–263.CrossRefGoogle Scholar
  5. Borgne, S. L., Paniagua, D., & Vazquez-Duhalt, R. (2008). Biodegradation of organic pollutants by halophilic bacteria and Archaea. Journal of Molecular Microbiology and Biotechnology, 15, 74–92.CrossRefGoogle Scholar
  6. Buchan, A., Collier, L. S., Neidle, E. I., & Moran, M. A. (2000). Key aromatic ring cleaving enzyme, protocatechuate 3,4 dioxygenase, in the ecologically important marine Roseobacter lineage. Applied and Environmental Microbiology, 66, 4662–4672.CrossRefGoogle Scholar
  7. Cao, B., Geng, A., & Chee, L. (2008). Induction of ortho- and meta- cleavage pathways in Pseudomonas in biodegradation of high benzoat concentration: MS identification of catabolic enzymes, genomics and proteomics. Applied Microbiology and Biotechnology, 81, 99–107.CrossRefGoogle Scholar
  8. Emerson, D., Chauhan, S., Oriel, P., & Breznak, J. A. (1994). Haloferax sp. D 1227, a halophilic archaeon capable of growth on aromatic compounds. Archives of Microbiology, 161, 445–452.CrossRefGoogle Scholar
  9. Fairley, D. J., Boyd, D. R., Sharma, N. D., Allen, C. C. R., Morgan, P., & Larkin, M. J. (2002). Aerobic metabolism of 4-hydroxybenzoic acide in Archaea via an unusual pathway involving an intramolecular migration. Applied and Environmental Microbiology, 68, 6246–6255.CrossRefGoogle Scholar
  10. Fetzner, S., Muller, R., & Lingens, F. (1989). Degradation of 2-chlorobenzoate by Pseudomonas cepacia 2CBS. Biological Chemistry Hoppe-Seyler, 370, 1173–1182.CrossRefGoogle Scholar
  11. Fu, W., & Oriel, P. (1999). Degradation of 3-phenylpropionic acid by Haloferax sp. D1227. Extremophiles, 3, 45–53.CrossRefGoogle Scholar
  12. Garcia, M. T., Ventosa, A., & Mellado, E. (2005). Catabolic versatility of aromatic compound degrading halophilic bacteria. FEMS Microbiology Ecology, 54, 97–109.CrossRefGoogle Scholar
  13. Harwood, C. S., & Parales, R. E. (1996). The β-ketoadipate pathway and the biology of self-identity. Annual Review of Microbiology, 50, 553–590.CrossRefGoogle Scholar
  14. Hegeman, G. D. (1966). Synthesis of enzymes of the mandelate pathways by Pseudomonas putida. Synthesis of enzyme by the wild type. Journal of Bacteriology, 91, 1140–1154.Google Scholar
  15. Jiang, H. L., Tay, S. T., Maszenan, A. M., & Tay, J. H. (2006). Physiological traits of bacterial strains isolated from phenol-degrading aerobic granules. FEMS Microbiology Ecology, 57, 182–191.CrossRefGoogle Scholar
  16. Jimenez, J. I., Minambres, B., Garcia, J. L., & Diaz, E. (2002). Genomic analysis of the aromatic catabolic pathways from Pseudomonas putida KT2440. Environmental Microbiology, 4, 824–841.CrossRefGoogle Scholar
  17. Kulichevskaya, I. S., Milekhina, E. I., Borzenkov, I. A., Zvyagintseva, I. S., & Belyaev, S. S. (1991). Oxidation of petroleum hydrocarbons by extremely halophilic archeobacteria. Microbiology, 60, 596–601.Google Scholar
  18. Lease, C. W. M., Bentham, R. H., Gaskin, S. E., & Juhasz, A. L. (2011). Isolation and identification of pyrene mineralizing Mycobacterium spp. from contaminated and uncontaminated sources. Applied and Environmental Soil Science. doi: 10.1155/2011/409643. 11 pg.
  19. Maskow, T., & Kleinsteuber, S. (2004). Carbon and energy fluxes during haloadaptation of Halomonas sp. EF11 growing on phenol. Extremophiles, 8, 133–141.CrossRefGoogle Scholar
  20. Moharikar, A., Kapley, A., & Purohit, H. J. (2003). Detection of dioxygenase genes present in various activated sludge. Environmental Science and Pollution Research International, 10, 373–378.CrossRefGoogle Scholar
  21. Mutlu, M. B., Martinez-Garcia, M., Santos, F., Pena, A., Guven, K., & Antón, J. (2008). Prokaryotic diversity in Tuz Lake, a hypersaline environment in Inland Turkey. FEMS Microbiology Ecology, 65, 474–483.CrossRefGoogle Scholar
  22. Ngai, K. L., Neidle, E. L., & Ornston, L. H. (1990). Catechol and chlorocatechol 1,2-dioxygenases. Methods in Enzymology, 188, 122–126.CrossRefGoogle Scholar
  23. Nicholson, C. A., & Fathepure, B. Z. (2004). Biodegradation of benzene by halophilic and halotolerant bacteria under aerobic conditions. Applied and Environmental Microbiology, 70, 1222–1225.CrossRefGoogle Scholar
  24. Nicholson, C. A., & Fathepure, B. Z. (2005). Aerobic biodegradation of benzene and toluene under hypersaline conditions at the great salt plains, Oklahoma. FEMS Microbiol Lett 245, 257–262.Google Scholar
  25. Oesterhelt, D. (1998). The structure and mechanism of the family of retinal proteins from halophilic Archaea. Current Opinion in Structural Biology, 8, 489–500.CrossRefGoogle Scholar
  26. Oren, A., Gurevich, P., Azachi, M., & Henis, Y. (1992). Microbial degradation of pollutants at high salt concentrations. Biodegradation, 3, 387–398.CrossRefGoogle Scholar
  27. Ottow, J. C. G., & Zolg, W. (1974). Improved procedure and colorimetrics test for the detection of ortho- and meta-cleavage of protocatechuate by Pseudomonas isolates. Canadian Journal of Microbiology, 20, 1059–1061.CrossRefGoogle Scholar
  28. Parales, R. E., & Haddock, J. D. (2004). Biocatalytic degradation of pollutants. Current Opinion in Biotechnology, 15, 374–379.CrossRefGoogle Scholar
  29. Parales, R. E., Bruce, N. C., Schmid, A., & Wackett, L. P. (2002). Biodegradation, biotransformation, and biocatalysis (B3). Applied and Environmental Microbiology, 68, 4699–4709.CrossRefGoogle Scholar
  30. Pernetti, M., & Di Palma, L. (2005). Experimental evaluation of inhibition effects of saline wastewater on activated sludge. Environmental Technology, 26(6), 695–703.CrossRefGoogle Scholar
  31. Pieper, D. H., & Reineke, W. (2000). Engineering bacteria for bioremediation. Current Opinion in Biotechnology, 11(3), 262–270.CrossRefGoogle Scholar
  32. Saitou, N., & Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4, 406–425.Google Scholar
  33. Samanta, S. K., Singh, O. V., & Jain, R. K. (2002). Polycyclic aromatic hydrocarbons: Environmental pollution and bioremediation. Trends in Biotechnology, 20, 243–248.CrossRefGoogle Scholar
  34. Saxena, P., & Thakur, I. S. (2005). Purification and characterization of catechol 1,2 dioxygenase of Pseudumonas fluorescens for degradation of 4-chlorobenzoic acid. Indian Journal of Biotechnology, 4, 134–138.Google Scholar
  35. Seo, J. S., Keum, Y. S., & Li, Q. X. (2010). Isolation of hydrocarbon-degrading extremely halophilic Archaea from an uncontaminated hypersaline pond (Camargue, France). Extremophiles, 14, 225–231.CrossRefGoogle Scholar
  36. Song, Y. J. (2009). Characterization of aromatic hydrocarbon degrading bacteria isolated from pine litter. Korean Journal of Microbiology and Biotechnology, 37, 333–339.Google Scholar
  37. Stanier, R. Y., & Ingraham, J. L. (1954). Protocatechuic acid oxidase. Journal of Biological Chemistry, 210, 799–808.Google Scholar
  38. Tapilatu, Y. H., Grossi, V., Acquaviva, M., Militon, C., Bertrand, J. C., & Cuny, P. (2010). Isolation of hydrocarbon degrading extremely halophilic Archaea from an uncontaminated hypersaline pond (Camargue, France). Extremophiles, 14, 225–231.CrossRefGoogle Scholar
  39. Thomson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., & Higgind, D. G. (1997). The Clustal-X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25, 4876–4882.CrossRefGoogle Scholar
  40. US EPA, et al. (1998). Test methods for evaluating solid wastes. Physica/Chemical Methods (SW-846) on CD-RON (8310th ed., pp. 200–230). VA., USA: U.S. National Technical Information Service.Google Scholar
  41. Van der Meer, J. R., de Vos, W. M., Harayama, S., & Zehnder, A. J. B. (1992). Molecular mechanisms of genetic adaptation to xenobiotic compounds. Microbiology Reviews, 56, 677–694.Google Scholar
  42. Xue, W., & Warshawsky, D. (2005). Metabolic activation of polycyclic and heterocyclic aromatic hydrocarbons and DNA damage: A review. Toxicology and Applied Pharmacology, 206, 73–93.CrossRefGoogle Scholar
  43. Zhao, B., Wang, H., Mao, X., & Li, R. (2009). A rapid screening method for bacteria degrading polycyclic aromatic hydrocarbons. Letters in Applied Microbiology, 49, 408–410.CrossRefGoogle Scholar
  44. Zvyagintseva, I., Belyaev, S., Borzenkov, I., Kostrikina, N., Milekhina, E., & Ivanov, M. (1995). Halophilic archaebacteria from the Kalamkass oil field. Microbiology, 64, 67–71.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Sevim Feyza Erdoğmuş
    • 1
  • Burçin Mutlu
    • 2
  • Safiye Elif Korcan
    • 1
  • Kıymet Güven
    • 2
  • Muhsin Konuk
    • 3
    Email author
  1. 1.Department of Biology, Faculty of Science and LiteraturesAfyon Kocatepe UniversityAfyonkarahisarTurkey
  2. 2.Department of Biology, Faculty of ScienceAnadolu UniversityEskişehirTurkey
  3. 3.Department of Molecular Biology and Genetics, Faculty of Engineering and Natural SciencesÜsküdar UniversityIstanbulTurkey

Personalised recommendations