Water, Air, & Soil Pollution

, 224:1435 | Cite as

Potential Ecological Risk of Heavy Metal Distribution in Cemetery Soils

Article

Abstract

In this paper, preliminary investigation was conducted to evaluate the potential ecological risk of heavy metals contamination in cemetery soils. Necrosol samples were collected from within and around the vicinity of the largest mass grave in Rwanda and analyzed for heavy metal concentrations using total digestion–inductively coupled plasma mass spectrometry and instrumental neutron activation analysis. Based on the concentrations of As, Cu, Cr, Pb, and Zn, the overall contamination degree (Cdeg) and potential ecological risks status (RI) of the necrosols were determined. The preliminary results revealed that the associated cemetery soils are only contaminated to a low degree. On the other hand, assessment of the potential ecological risk index (RI) revealed that cumulative heavy metal content of the soil do not pose any significant ecological risks. These findings, therefore, suggest that, while cemetery soils may be toxic due to the accumulation of certain heavy metals, their overall ecological risks may be minimal and insignificant.

Keywords

Heavy metals Cemetery soils Mass graves Environmental management 

References

  1. Abolfazl, N., & Ismail, A. (2011). Assessment of metals contamination in Klang River surface sediments by using different indexes. Environment Asia, 4(1), 30–38.Google Scholar
  2. Abrahim, G. M. S., Parker, R. J., & Nichol, S. L. (2007). Distribution and assessment of sediment toxicity in Tamaki Estuary, Auckland, New Zealand. Environmental Geology, 52(7), 1315–1323.CrossRefGoogle Scholar
  3. Carter, D. O., & Tibbett, M. (2008). Cadaver decomposition and soil: Processes. In M. Tibbett & D. O. Carter (Eds.), Soil analysis in forensic taphonomy: Chemical and biological effects of buried human remains (pp. 29–51). Boca Raton: CRC.CrossRefGoogle Scholar
  4. Davies, O. A., Allision, M. E., & Uyi, H. S. (2006). Bioaccumulation of heavy metals in water, sediment and periwinkle (Tympanotonus fuscatus var radula) from the Elechi Creek, Niger Delta. African Journal of Biotechnology, 5(10), 968–973.Google Scholar
  5. Dent, B. B., Forbes, S. L., & Stuart, B. H. (2004). Review of human decomposition processes in soil. Environmental Geology, 45(4), 576–585.CrossRefGoogle Scholar
  6. European Commission & Republic of Rwanda (2006) Environmental profile of RwandaGoogle Scholar
  7. Gimeno-García, E., Andreu, V., & Boluda, R. (1996). Heavy metals incidence in the application of inorganic fertilizers and pesticides to rice farming soils. Environmental Pollution, 92(1), 19–25.CrossRefGoogle Scholar
  8. Gomez-Parra, A., Forja, J. M., DelValls, T. A., Saenz, I., & Riba, I. (2000). Early contamination by heavy metals of the Guadalquivir estuary after the Aznalcóllar mining spill (SW Spain). Marine Pollution Bulletin, 40(12), 1115–1123.CrossRefGoogle Scholar
  9. Gong, Q., Deng, J., Xiang, Y., Wang, Q., & Yang, L. (2008). Calculating pollution indices by heavy metals in ecological geochemistry assessment and a case study in parks of Beijing. Journal of China University of Geosciences, 19(3), 230–241.CrossRefGoogle Scholar
  10. Hakanson, L. (1980). An ecological risk index for aquatic pollution controls a sedimentological approach. Water Research, 14, 975–1001.CrossRefGoogle Scholar
  11. Han, F. X., Banin, A., Su, Y., Monts, D. L., Plodinec, M. J., Kingery, W. L., et al. (2002). Industrial age anthropogenic inputs of heavy metals into the pedosphere. Naturwissenschaften, 89(11), 497–504.CrossRefGoogle Scholar
  12. Haglund, W. D., Connor, M., & Scott, D. D. (2001). The archaeology of contemporary mass graves. Historical Archaeology, 35(1), 57–69.Google Scholar
  13. Hernandez, L., Probst, A., Probst, J. L., & Ulrich, E. (2003). Heavy metal distribution in some French forest soils: Evidence for atmosphere contamination. The Science of the Total Environment, 312, 195–210.CrossRefGoogle Scholar
  14. Huh, C., Finney, B. P., & Stull, J. K. (1992). Anthropogenic inputs of several heavy metals to near shore basins off Los Angeles. Progress in Oceanography, 30(1–4), 335–351.CrossRefGoogle Scholar
  15. Jintao, L., Chen, C., Song, X., Han, Y., & Liang, Z. (2011). Assessment of heavy metal pollution in soil and plants from Dunhua sewage irrigation area. International Journal of Electrochemical Science, 6, 5314–5324.Google Scholar
  16. Jonker, C., & Olivier, J. (2012). Mineral contamination from cemetery soils: Case study of Zandfontein cemetery, South Africa. International Journal of Environmental Research and Public Health, 9, 511–520.CrossRefGoogle Scholar
  17. Kigali Memorial Centre & Aegis Trust (2004). GenosideGoogle Scholar
  18. Liu, W., Zhao, J., Ouyang, Z., Soderlund, L., & Liu, G. (2005). Impacts of sewage irrigation on heavy metal distribution and contamination in Beijing, China. Environment International, 31(6), 805–812.CrossRefGoogle Scholar
  19. Luo, W., Lu, Y., Gisey, J. P., Wang, T., Shi, Y., Wang, G., et al. (2007). Effects of land use on concentrations of metals in surface soils and ecological risk around Guanting Reservoir, China. Environ Geochem Health, 29, 459–471.CrossRefGoogle Scholar
  20. Luoma, S. N., & Rainbow, P. S. (2008). Metal contamination in aquatic environments: Science and lateral management (573 pp.). Cambridge: Cambridge University Press.Google Scholar
  21. Rasmussen, K. L., Boldsen, J. L., Kristensen, H. K., Skytte, L., Hansen, H. L., Mølholm, L., et al. (2008). Mercury levels in Danish medieval human bones. Journal of Archaeological Science, 35(8), 2295–2306.CrossRefGoogle Scholar
  22. Salomons, W., & Förstner, U. (1984). Metals in the hydrocycle. Berlin: Springer.CrossRefGoogle Scholar
  23. Schrop, S. J., Lewis, F. G., Windom, H. L., Ryan, J. D., Calder, F. D., & Burney, L. C. (1990). Interpretation of metal concentrations in estuarine sediments of Florida using aluminum as a reference element. Estuaries and Coasts, 13(3), 227–235.CrossRefGoogle Scholar
  24. Shapiro, I. M., Mitchell, G., Davidson, I., & Katz, S. H. (1975). The lead content of teeth. Archives of Environmental Health, 17, 965–978.Google Scholar
  25. Smical, A., Vasile, H., Vasile, O., Jozsef, J., & Elena, P. (2008). Studies on transfer and bioaccumulation of heavy metals from soil into lettuce. Environmental Engineering and Management Journal, 7(5), 609–615.Google Scholar
  26. Spongberg, A., & Becks, P. (2000). Inorganic soil contamination from cemetery leachate. Water, Air, and Soil Pollution, 117, 313–327.CrossRefGoogle Scholar
  27. Summers, J. K., Wade, T. L., Engle, V. D., & Maleb, Z. A. (1996). Normalization of metal concentrations in estuarine sediments from the Gulf of Mexico. Estuaries, 19(3), 581–594.CrossRefGoogle Scholar
  28. Sutherland, R. A. (2000). Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environmental Geology, 39, 611–627.CrossRefGoogle Scholar
  29. Tibbett, M., & Carter, D. O. (2009). Research in forensic taphonomy: A soil-based perspective. In K. Ritz, L. Dawson, & D. Miller (Eds.), Criminal and environmental soil forensics (pp. 317–331). Dordrecht: Springer.CrossRefGoogle Scholar
  30. Turekian, K. K., & Wedepohl, K. H. (1961). Distribution of the elements in some major units of the Earth’s crust. Geological Society of America Bulletin, 72, 175–192.CrossRefGoogle Scholar
  31. Uslu, A., Bariş, E., & Erdoğan, E. (2009). Ecological concerns over cemeteries. African Journal of Agricultural Research, 4(13), 1505–1511.Google Scholar
  32. Vare, L. (2006). Anthropogenic inputs of heavy metals to the Kongsfjord area. Geophysical Research Abstracts, 8, 06079.Google Scholar
  33. Vinodhini, R., & Narayanan, M. (2008). Bioaccumulation of heavy metals in organs of fresh water fish Cyprinus carpio (common carp). Int J Environ Sci Tech, 5(2), 179–182.Google Scholar
  34. Waldron, H. A. (1983). On the post-mortem accumulation of lead by skeletal tissues. Journal of Archaeological Science, 10(1), 35–40.CrossRefGoogle Scholar
  35. Wilson, A. S., Janaway, R. C., Holland, A. D., Dodson, H. I., Baran, E., Pollard, A. M., et al. (2007). Modelling the buried human body environment in upland climes using three contrasting field sites. Forensic Science International, 169(1), 6–18.CrossRefGoogle Scholar
  36. Wong, S. C., Li, X. D., Zhang, G., Qi, S. H., & Min, Y. S. (2002). Heavy metals in agricultural soils of the Pearl River Delta, South China. Environmental Pollution, 119(1), 33–44.CrossRefGoogle Scholar
  37. Wu, Y., Xu, Y., Zhang, J., & Hu, S. (2010). Evaluation of ecological risk and primary empirical research on heavy metals in polluted soil over Xiaoqinling gold mining region, Shaanxi, China. Transactions of Nonferrous Metals Society of China, 20(4), 688–694.CrossRefGoogle Scholar
  38. Zhang, W., Feng, H., Chang, J., Qu, J., Xie, H., & Yu, L. (2009). Heavy metal contamination in surface sediments of Yangtze River intertidal zone: An assessment from different indexes. Environmental Pollution, 157, 1533–1543.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.University of Saint JosephMacauChina

Personalised recommendations