Water, Air, & Soil Pollution

, 224:1411 | Cite as

Assessing Limitations for PAH Biodegradation in Long-Term Contaminated Soils Using Bioaccessibility Assays

  • Nagissa Mahmoudi
  • Greg F. SlaterEmail author
  • Albert L. Juhasz


Polycyclic aromatic hydrocarbons (PAHs) are generated by a range of industrial processes including petroleum and gas production and are often found in high concentrations at industrial sites. Once PAHs enter the environment, the predominant mechanisms for removal are biological via microbial activity. However, PAHs have the potential to partition onto soil organic matter thereby decreasing their bioavailability to microorganisms and limiting their degradation. This explanation was felt to be the reason for a lack of evidence of PAH biodegradation in a study of long-term contaminated soils. To test the hypothesis that bioavailability was a limiting factor for biodegradation in theses soils, PAH bioavailability was determined using nonexhaustive extraction (propanol, butanol, hydrooxypropyl-β-cyclodextrin) and oxidation (persulfate) methodologies designed to determine the fraction of contaminants within soil which are available for biological uptake. The assays gave varying results for each soil, and no specific trends across all soils were observed. PAH bioaccessibility, derived from the HP-β-CD assay which has been the most extensively tested in the literature, was estimated to be between 0 and 10 % for most soils, with the exception of pyrene, indicating that a large fraction of the soil-borne PAHs at the site are not available to microorganisms and that bioavailability limitations may be a primary cause for the lack of observed biodegradation at this site. These results highlight the importance of bioavailability to PAH degradation as well as the relevance of utilizing an assay that has been evaluated across many soil conditions and parameters.


Biodegradation Bioaccessibility PAHs Bioremediation 



The authors thank John Weber (University of South Australia) and Jennie Kirby (McMaster University) for their laboratory assistance and technical expertise. Thank you also to Leanne Burns, Silvia Mancini and Gillian Roos of Golder Associates Ltd. for providing the soil samples used in this study. This work was funded by grants to GFS and a scholarship to NM from the Natural Sciences & Engineering Research Council of Canada.


  1. Abdel-Rahman, M. S., Skowronski, G. A., & Turkall, R. M. (1992). Effects of soil on the bioavailability of m-xylene after oral or dermal exposure. Soil and Sediment Contamination, 1(2), 183–196.CrossRefGoogle Scholar
  2. Alexander, M. (2000). Aging, bioavailability, and overestimation of risk from environmental pollutants. Environmental Science and Technology, 34(20), 4259–4265.CrossRefGoogle Scholar
  3. Allan, I. J., Semple, K. T., Hare, R., & Reid, B. J. (2006). Prediction of mono-and polycyclic aromatic hydrocarbon degradation in spiked soils using cyclodextrin extraction. Environmental Pollution, 144(2), 562–571.CrossRefGoogle Scholar
  4. Amellal, N., Portal, J. M., & Berthelin, J. (2001). Effect of soil structure on the bioavailability of polycyclic aromatic hydrocarbons within aggregates of a contaminated soil. Applied Geochemistry, 16(14), 1611–1619.CrossRefGoogle Scholar
  5. Bonten, L. T. C. (2001). Improving bioremediation of PAH contaminated soils by thermal pretreatment. Ph.D. Thesis, Wageningen University, The NetherlandsGoogle Scholar
  6. Bosma, T. N. P., Middeldorp, P. J. M., Schraa, G., & Zehnder, A. J. B. (1996). Mass transfer limitation of biotransformation: quantifying bioavailability. Environmental Science and Technology, 31(1), 248–252.CrossRefGoogle Scholar
  7. Bowmer, K. H. (1991). Atrazine persistence and toxicity in two irrigated soils of Australia. Soil Research, 29(2), 339–350.CrossRefGoogle Scholar
  8. Breedveld, G. D., & Karlsen, D. A. (2000). Estimating the availability of polycyclic aromatic hydrocarbons for bioremediation of creosote contaminated soils. Applied Microbiology and Biotechnology, 54(2), 255–261.CrossRefGoogle Scholar
  9. Cachada, A., Pato, P., Rocha-Santos, T., da Silva, E. F., & Duarte, A. C. (2012). Levels, sources and potential human health risks of organic pollutants in urban soils. Science of the Total Environment, 430, 184–192.CrossRefGoogle Scholar
  10. Caldini, G., Cenci, G., Manenti, R., & Morozzi, G. (1995). The ability of an environmental isolate of Pseudomonas fluorescens to utilize chrysene and other four-ring polynuclear aromatic hydrocarbons. Applied Microbiology and Biotechnology, 44(1), 225–229.CrossRefGoogle Scholar
  11. Cerniglia, C. E. (1992). Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation, 3(2), 351–368.CrossRefGoogle Scholar
  12. Cerniglia, C. E. (1997). Fungal metabolism of polycyclic aromatic hydrocarbons: past, present and future applications in bioremediation. Journal of Industrial Microbiology and Biotechnology, 19(5), 324–333.CrossRefGoogle Scholar
  13. Cerniglia, C. E., & Sutherland, J. B. (2010). Degradation of polycyclic aromatic hydrocarbons by fungi. In K. N. Timmis (Ed.), Handbook of hydrocarbon and lipid microbiology (pp. 2079–2110). Berlin: Springer.CrossRefGoogle Scholar
  14. Chung, N., & Alexander, M. (2002). Effect of soil properties on bioavailability and extractability of phenanthrene and atrazine sequestered in soil. Chemosphere, 48(1), 109–115.CrossRefGoogle Scholar
  15. Cornelissen, G., Rigterink, H., Ferdinandy, M. M. A., & Van Noort, P. C. M. (1998). Rapidly desorbing fractions of PAHs in contaminated sediments as a predictor of the extent of bioremediation. Environmental Science and Technology, 32(7), 966–970.CrossRefGoogle Scholar
  16. Cuypers, C., Grotenhuis, T., Joziasse, J., & Rulkens, W. (2000). Rapid persulfate oxidation predicts PAH bioavailability in soils and sediments. Environmental Science and Technology, 34(10), 2057–2063.CrossRefGoogle Scholar
  17. Cuypers, C., Pancras, T., Grotenhuis, T., & Rulkens, W. (2002). The estimation of PAH bioavailability in contaminated sediments using hydroxypropyl-β-cyclodextrin and Triton X-100 extraction techniques. Chemosphere, 46(8), 1235–1245.CrossRefGoogle Scholar
  18. Doick, K. J., Dew, N. M., & Semple, K. T. (2005). Linking catabolism to cyclodextrin extractability: determination of the microbial availability of PAHs in soil. Environmental Science and Technology, 39(22), 8858–8864.CrossRefGoogle Scholar
  19. Doick, K. J., Clasper, P. J., Urmann, K., & Semple, K. T. (2006). Further validation of the HPCD-technique for the evaluation of PAH microbial availability in soil. Environmental Pollution, 144(1), 345–354.CrossRefGoogle Scholar
  20. Erickson, D. C., Loehr, R. C., & Neuhauser, E. F. (1993). PAH loss during bioremediation of manufactured gas plant site soils. Water Research, 27(5), 911–919.CrossRefGoogle Scholar
  21. Fiala, Z., Vyskocil, A., Krajak, V., Masin, V., Emminger, S., Srb, V., et al. (1999). Polycyclic aromatic hydrocarbons, I. Environmental contamination and environmental exposure. Acta Medica, 42(2), 77–89.Google Scholar
  22. Green, C. T., & Scow, K. M. (2000). Analysis of phospholipid fatty acids (PLFA) to characterize microbial communities in aquifers. Hydrogeology Journal, 8(1), 126–141.CrossRefGoogle Scholar
  23. Habe, H., & Omori, T. (2003). Genetics of polycyclic aromatic hydrocarbon metabolism in diverse aerobic bacteria. Bioscience, Biotechnology, and Biochemistry, 67(2), 225–307.CrossRefGoogle Scholar
  24. Haritash, A. K., & Kaushik, C. P. (2009). Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. Journal of Hazardous Materials, 169(1), 1–15.CrossRefGoogle Scholar
  25. Harvey, R. G. (1996). Mechanisms of carcinogenesis of polycyclic aromatic hydrocarbons. Polycyclic Aromatic Compounds, 9(1–4), 1–23.CrossRefGoogle Scholar
  26. Heijden, S. A., & Jonker, M. T. O. (2009). PAH bioavailability in field sediments: comparing different methods for predicting in situ bioaccumulation. Environmental Science and Technology, 43(10), 3757–3763.CrossRefGoogle Scholar
  27. Hickman, Z. A., Swindell, A. L., Allan, I. J., Rhodes, A. H., Hare, R., Semple, K. T., et al. (2008). Assessing biodegradation potential of PAHs in complex multi-contaminant matrices. Environmental Pollution, 156(3), 1041–1045.CrossRefGoogle Scholar
  28. Hinga, K. R. (2003). Degradation rates of low molecular weight PAH correlate with sediment TOC in marine subtidal sediments. Marine Pollution Bulletin, 46(4), 466–474.CrossRefGoogle Scholar
  29. Huesemann, M. H., Hausmann, T. S., & Fortman, T. J. (2002). Microbial factors rather than bioavailability limit the rate and extent of PAH biodegradation in aged crude oil contaminated model soils. Bioremediation Journal, 6(4), 321–336.CrossRefGoogle Scholar
  30. Huesemann, M. H., Hausmann, T. S., & Fortman, T. J. (2003). Assessment of bioavailability limitations during slurry biodegradation of petroleum hydrocarbons in aged soils. Environmental Toxicology and Chemistry, 22(12), 2853–2860.CrossRefGoogle Scholar
  31. Huesemann, M. H., Hausmann, T. S., & Fortman, T. J. (2004). Does bioavailability limit biodegradation? A comparison of hydrocarbon biodegradation and desorption rates in aged soils. Biodegradation, 15(4), 261–274.CrossRefGoogle Scholar
  32. Isaacson, P. J., & Frink, C. R. (1984). Nonreversible sorption of phenolic compounds by sediment fractions: the role of sediment organic matter. Environmental Science and Technology, 18(1), 43–48.CrossRefGoogle Scholar
  33. Jacques, R. J. S., Santos, E. C., Bento, F. M., Peralba, M. C. R., Selbach, P. A., Sá, E. L. S., et al. (2005). Anthracene biodegradation by Pseudomonas sp. isolated from a petrochemical sludge landfarming site. International Biodeterioration and Biodegradation, 56(3), 143–150.CrossRefGoogle Scholar
  34. Jones, K. C., Stratford, J. A., Tidridge, P., Waterhouse, K. S., & Johnston, A. E. (1989). Polynuclear aromatic hydrocarbons in an agricultural soil: long-term changes in profile distribution. Environmental Pollution, 56(4), 337–351.CrossRefGoogle Scholar
  35. Juhasz, A. L., & Naidu, R. (2000). Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo[a]pyrene. International Biodeterioration and Biodegradation, 45(1–2), 57–88.CrossRefGoogle Scholar
  36. Juhasz, A. L., Megharaj, M., & Naidu, R. (2000). Bioavailability: the major challenge (constraint) to bioremediation of organically contaminated soils. In D. Wise, D. J. Trantolo, E. J. Cichon, H. I. Inyang, & U. Stottmeister (Eds.), Remediation engineering of contaminated soils (pp. 217–241). New York: Marcel Dekker, Inc.Google Scholar
  37. Juhasz, A. L., Waller, N., & Stewart, R. (2005). Predicting the efficacy of polycyclic aromatic hydrocarbon bioremediation in creosote-contaminated soil using bioavailability assays. Bioremediation Journal, 9(2), 99–114.CrossRefGoogle Scholar
  38. Juhasz, A. L., Smith, E., Waller, N., Stewart, R., & Weber, J. (2010). Bioavailability of residual polycyclic aromatic hydrocarbons following enhanced natural attenuation of creosote-contaminated soil. Environmental Pollution, 158(2), 585–591.CrossRefGoogle Scholar
  39. Katayama, A., Bhula, R., Burns, G. R., Carazo, E., Felsot, A., Hamilton, D., et al. (2010). Bioavailability of xenobiotics in the soil environment. In Reviews of environmental contamination and toxicology, vol. 203 (pp. 1–86). New York: Springer.CrossRefGoogle Scholar
  40. Kelsey, J. W., & Alexander, M. (1997). Declining bioavailability and inappropriate estimation of risk of persistent compounds. Environmental Toxicology and Chemistry, 16(3), 582–585.CrossRefGoogle Scholar
  41. Kelsey, J. W., Kottler, B. D., & Alexander, M. (1996). Selective chemical extractants to predict bioavailability of soil-aged organic chemicals. Environmental Science and Technology, 31(1), 214–217.CrossRefGoogle Scholar
  42. Khan, S. U., & Ivarson, K. C. (1982). Release of soil bound (nonextractable) residues by various physiological groups of microorganisms. Journal of Environmental Science and Health. Part. B, 17(6), 737–749.CrossRefGoogle Scholar
  43. Kim, S. J., Kweon, O., Jones, R. C., Freeman, J. P., Edmondson, R. D., & Cerniglia, C. E. (2007). Complete and integrated pyrene degradation pathway in Mycobacterium vanbaalenii PYR-1 based on systems biology. Journal of Bacteriology, 189(2), 464–472.CrossRefGoogle Scholar
  44. Kiyohara, H., Torigoe, S., Kaida, N., Asaki, T., Iida, T., Hayashi, H., et al. (1994). Cloning and characterization of a chromosomal gene cluster, pah, that encodes the upper pathway for phenanthrene and naphthalene utilization by Pseudomonas putida OUS82. Journal of Bacteriology, 176(8), 2439–2443.Google Scholar
  45. Lee, P. H., Ong, S. K., Golchin, J., & Nelson, G. L. (2001). Use of solvents to enhance PAH biodegradation of coal tar. Water Research, 35(16), 3941–3949.CrossRefGoogle Scholar
  46. Liste, H. H., & Alexander, M. (2002). Butanol extraction to predict bioavailability of PAHs in soil. Chemosphere, 46(7), 1011–1017.CrossRefGoogle Scholar
  47. Mahmoudi, N., Slater, G. F., & Fulthorpe, R. R. (2011). Comparison of commercial DNA extraction kits for isolation and purification of bacterial and eukaryotic DNA from PAH-contaminated soils. Canadian Journal of Microbiology, 57(8), 623–628.CrossRefGoogle Scholar
  48. Mahmoudi, N., Fulthorpe, R. R., Burns, L., Mancini, S., & Slater, G. F. (2012). Assessing microbial carbon sources and potential PAH degradation using natural abundance 14C analysis. Environmental Pollution (in press).Google Scholar
  49. Maier, R. (2000). Bioavailability and its importance to bioremediation. In J. J. Valdes (Ed.), Bioremediation (pp. 59–78). Massachusetts: Kluwer Academic Publishers.CrossRefGoogle Scholar
  50. Menn, F. M., Applegate, B. M., & Sayler, G. S. (1993). NAH plasmid-mediated catabolism of anthracene and phenanthrene to naphthoic acids. Applied and Environmental Microbiology, 59(6), 1938–1942.Google Scholar
  51. Morrison, D. E., Robertson, B. K., & Alexander, M. (2000). Bioavailability to earthworms of aged DDT, DDE, DDD, and dieldrin in soil. Environmental Science and Technology, 34(4), 709–713.CrossRefGoogle Scholar
  52. Nam, K., & Alexander, M. (1998). Role of nanoporosity and hydrophobicity in sequestration and bioavailability: tests with model solids. Environmental Science and Technology, 32(1), 71–74.CrossRefGoogle Scholar
  53. Papadopoulos, A., Paton, G. I., Reid, B. J., & Semple, K. T. (2007a). Prediction of PAH biodegradation in field contaminated soils using a cyclodextrin extraction technique. Journal of Environmental Monitoring, 9(6), 516–522.CrossRefGoogle Scholar
  54. Papadopoulos, A., Semple, K. T., & Reid, B. J. (2007b). Prediction of microbial accessibility of carbon-14-phenanthrene in soil in the presence of pyrene or benzo[a]pyrene using an aqueous cyclodextrin extraction technique. Journal of Environmental Quality, 36(5), 1385–1391.CrossRefGoogle Scholar
  55. Pavanello, S., & Lotti, M. (2012). Internal exposure to carcinogenic polycyclic aromatic hydrocarbons and DNA damage. Archives of Toxicology, 86(11), 1–3.Google Scholar
  56. Peng, R. H., Xiong, A. S., Xue, Y., Fu, X. Y., Gao, F., Zhao, W., et al. (2008). Microbial biodegradation of polyaromatic hydrocarbons. FEMS Microbiology Reviews, 32(6), 927–955.CrossRefGoogle Scholar
  57. Pignatello, J. J., & Xing, B. (1995). Mechanisms of slow sorption of organic chemicals to natural particles. Environmental Science and Technology, 30(1), 1–11.CrossRefGoogle Scholar
  58. Pinyakong, O., Habe, H., & Omori, T. (2003). The unique aromatic catabolic genes in sphingomonads degrading polycyclic aromatic hydrocarbons (PAHs). Journal of General and Applied Microbiology, 49(1), 1–19.CrossRefGoogle Scholar
  59. Reid, B. J., Stokes, J. D., Jones, K. C., & Semple, K. T. (2000). Nonexhaustive cyclodextrin-based extraction technique for the evaluation of PAH bioavailability. Environmental Science and Technology, 34(15), 3174–3179.CrossRefGoogle Scholar
  60. Robertson, B. K., & Alexander, M. (1998). Sequestration of DDT and dieldrin in soil: disappearance of acute toxicity but not the compounds. Environmental Toxicology and Chemistry, 17(6), 1034–1038.CrossRefGoogle Scholar
  61. Rostami, I., & Juhasz, A. L. (2011). Assessment of persistent organic pollutant (POP) bioavailability and bioaccessibility for human health exposure assessment: a critical review. Critical Reviews in Environmental Science and Technology, 41(7), 623–656.CrossRefGoogle Scholar
  62. Roy, T. A., & Singh, R. (2001). Effect of soil loading and soil sequestration on dermal bioavailability of polynuclear aromatic hydrocarbons. Bulletin of Environmental Contamination and Toxicology, 67(3), 324–331.CrossRefGoogle Scholar
  63. Samanta, S. K., Chakraborti, A. K., & Jain, R. K. (1999). Degradation of phenanthrene by different bacteria: evidence for novel transformation sequences involving the formation of 1-naphthol. Applied Microbiology and Biotechnology, 53(1), 98–107.CrossRefGoogle Scholar
  64. Scribner, S. L., Boyd, S. A., Benzing, T. R., & Sun, S. (1992). Desorption and unavailability of aged simazine residues in soil from a continuous corn field. Journal of Environmental Quality, 21(1), 115–120.CrossRefGoogle Scholar
  65. Semple, K. T., Doick, K. J., Jones, K. C., Burauel, P., Craven, A., & Harms, H. (2004). Defining bioavailability and bioaccessibility of contaminated soil and sediment is complicated. Environmental Science and Technology, 38(12), 228–231.CrossRefGoogle Scholar
  66. Semple, K. T., Doick, K. J., Wick, L. Y., & Harms, H. (2007). Microbial interactions with organic contaminants in soils: definitions, processes and measurement. Environmental Pollution, 150(1), 166–176.Google Scholar
  67. Shuttleworth, K. L., & Cerniglia, E. (1995). Environmental aspects of PAH biodegradation. Applied Biochemistry and Biotechnology, 54(1), 291–302.CrossRefGoogle Scholar
  68. Singh, A., Van Hamme, J. D., & Ward, O. P. (2007). Surfactants in microbiology and biotechnology: Part 2. Application aspects. Biotechnology Advances, 25(1), 99–121.CrossRefGoogle Scholar
  69. Slater, G. F., White, H. K., Eglinton, T. I., & Reddy, C. M. (2005). Determination of microbial carbon sources in petroleum contaminated sediments using molecular 14C analysis. Environmental Science and Technology, 39(8), 2552–2558.CrossRefGoogle Scholar
  70. Stokes, J. D., Wilkinson, A., Reid, B. J., Jones, K. C., & Semple, K. T. (2005). Prediction of polycyclic aromatic hydrocarbon biodegradation in contaminated soils using an aqueous hydroxypropyl-beta-cyclodextrin extraction technique. Environmental Toxicology and Chemistry, 24(6), 1325–1330.CrossRefGoogle Scholar
  71. Stroud, J. L., Paton, G. I., & Semple, K. T. (2009). Predicting the biodegradation of target hydrocarbons in the presence of mixed contaminants in soil. Chemosphere, 74(4), 563–567.CrossRefGoogle Scholar
  72. Tang, J., & Alexander, M. (1999). Mild extractability and bioavailability of polycyclic aromatic hydrocarbons in soil. Environmental Toxicology and Chemistry, 18(12), 2711–2714.CrossRefGoogle Scholar
  73. Thibault, S. L., Anderson, M., & Frankenberger, W. T. (1996). Influence of surfactants on pyrene desorption and degradation in soils. Applied and Environmental Microbiology, 62(1), 283.Google Scholar
  74. Tiehm, A. (1994). Degradation of polycyclic aromatic hydrocarbons in the presence of synthetic surfactants. Applied and Environmental Microbiology, 60(1), 258.Google Scholar
  75. Ting, W. T. E., Yuan, S. Y., Wu, S. D., & Chang, B. V. (2011). Biodegradation of phenanthrene and pyrene by Ganoderma lucidum. International Biodeterioration and Biodegradation, 65(1), 238–242.CrossRefGoogle Scholar
  76. Van Hamme, J. D., Singh, A., & Ward, O. P. (2003). Recent advances in petroleum microbiology. Microbiology and Molecular Biology Reviews, 67(4), 503–549.CrossRefGoogle Scholar
  77. van Herwijnen, R., Wattiau, P., Bastiaens, L., Daal, L., Jonker, L., Springael, D., et al. (2003). Elucidation of the metabolic pathway of fluorene and cometabolic pathways of phenanthrene, fluoranthene, anthracene and dibenzothiophene by Sphingomonas sp. LB126. Research in Microbiology, 154(3), 199–206.CrossRefGoogle Scholar
  78. Volkering, F., Breure, A. M., van Andel, J. G., & Rulkens, W. H. (1995). Influence of nonionic surfactants on bioavailability and biodegradation of polycyclic aromatic hydrocarbons. Applied and Environmental Microbiology, 61(5), 1699–1705.Google Scholar
  79. Wang, J., Chen, S., Tian, M., Zheng, X., Gonzales, L., Ohura, T., et al. (2012). Inhalation cancer risk associated with exposure to complex polycyclic aromatic hydrocarbon mixtures in an electronic waste and urban area in South China. Environmental Science and Technology, 46(17), 9745–9752.CrossRefGoogle Scholar
  80. Weissenfels, W. D., Klewer, H. J., & Langhoff, J. (1992). Adsorption of polycyclic aromatic hydrocarbons (PAHs) by soil particles: influence on biodegradability and biotoxicity. Applied Microbiology and Biotechnology, 36(5), 689–696.CrossRefGoogle Scholar
  81. Xu, H. X., Wu, H. Y., Qiu, Y. P., Shi, X. Q., He, G. H., Zhang, J. F., et al. (2011). Degradation of fluoranthene by a newly isolated strain of Herbaspirillum chlorophenolicum from activated sludge. Biodegradation, 22(2), 335–345.CrossRefGoogle Scholar
  82. Yang, J. J., Roy, T. A., Krueger, A. J., Neil, W., & Mackerer, C. R. (1989). In vitro and in vivo percutaneous absorption of benzo[a]pyrene from petroleum crude-fortified soil in the rat. Bulletin of Environmental Contamination and Toxicology, 43(2), 207–214.CrossRefGoogle Scholar
  83. Yuan, S. Y., Chang, J. S., Yen, J. H., & Chang, B. V. (2001). Biodegradation of phenanthrene in river sediment. Chemosphere, 43(3), 273–278.CrossRefGoogle Scholar
  84. Zhang, W., Bouwer, E. J., & Ball, W. P. (1998). Bioavailability of hydrophobic organic contaminants: effects and implications of sorption-related mass transfer on bioremediation. Ground Water Monitoring & Remediation, 18(1), 126–138.CrossRefGoogle Scholar
  85. Zhu, H., & Aitken, M. D. (2010). Surfactant-enhanced desorption and biodegradation of polycyclic aromatic hydrocarbons in contaminated soil. Environmental Science and Technology, 44(19), 7260–7265.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Nagissa Mahmoudi
    • 1
  • Greg F. Slater
    • 1
    Email author
  • Albert L. Juhasz
    • 2
  1. 1.School of Geography and Earth SciencesMcMaster UniversityHamiltonCanada
  2. 2.Centre for Environmental Risk Assessment and RemediationUniversity of South AustraliaAdelaideAustralia

Personalised recommendations