Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Occurrence and Removal of Antiviral Drugs in Environment: A Review

  • 1641 Accesses

  • 27 Citations

Abstract

Antiviral drugs have been recently recognized as one of the emerging contaminants in the environment. These are discharged after therapeutic use through human excretion. Effluent containing high concentration of antiviral drugs discharged from production facilities is also a cause of concern to nearby aquatic bodies. There is an increased interest in their removal because they are highly bioactive. Some antiviral drugs are resistant to conventional methods of degradation, and there is a risk of development of antiviral resistance in humans and animals if exposed repeatedly for long periods. To date, the potential human, animal, and ecological risks associated with the discharge of these antiviral compounds to the environment are not well documented. This study presents a brief summary on occurrence, ecotoxicological risks, and physicochemical properties of antiviral drugs in the environment. The needs regarding removal, disposal, and treatment of antiviral drugs are also addressed.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. Accinelli, C., Caracciolo, A. B., & Grenni, P. (2007). Degradation of the antiviral drug oseltamivir carboxylate in surface water samples. International Journal of Environmental and Analytical Chemistry, 87(8), 579–587.

  2. Accinelli, C., Saccà, M. L., Fick, J., Mencarelli, M., Lindberg, R., & Olsen, B. (2010a). Dissipation and removal of oseltamivir (Tamiflu) in different aquatic environments. Chemosphere, 79(8), 891–897.

  3. Accinelli, C., Sacca, M. L., Batisson, I., Fick, J., Mencarelli, M., & Grabic, R. (2010b). Removal of oseltamivir (Tamiflu) and other selected pharmaceuticals from wastewater using a granular bioplastic formulation entrapping propagules of Phanerochaete chrysosporium. Chemosphere, 81, 436–443.

  4. Adams, C., Asce, M., Wang, Y., Loftin, K., & Meyer, M. (2002). Removal of antibiotics from surface and distilled water in conventional water treatment processes. Journal of Environmental Engineering, 128, 253–260.

  5. Ahmaruzzaman, M. (2011). Industrial wastes as low-cost potential adsorbents for the treatment of wastewater laden with heavy metals. Advances in Colloid and Interface Science, 166(1), 36–59.

  6. Al-Rajab, A. J., Sabourin, L., Chapman, R., Lapen, D. R., & Topp, E. (2010). Fate of the antiretroviral drug tenofovir in agricultural soil. Science of the Total Environment, 408, 5559–5564.

  7. An, T., An, J., Yang, H., Li, G., Feng, H., & Nie, X. (2011). Photocatalytic degradation kinetics and mechanism of antivirus drug-lamivudine in TiO2 dispersion. Journal of Hazardous Materials, 197, 229–236.

  8. Bartels, P., & von Tümpling, W., Jr. (2008). The environmental fate of the antiviral drug oseltamivir carboxylate in different waters. Science of the Total Environment, 405, 215–225.

  9. Basavaiah, K., & Anil Kumar, U. R. (2007). Titrimetric and spectrophotometric determination of zidovudine in pharmaceuticals using chloramine-T and two dyes. Indian Journal of Chemical Technology, 14(2), 200–203.

  10. Bolong, N., Ismail, A. F., Salim, M. R., & Matsuura, T. (2009). A review of the effects of emerging contaminants in wastewater and options for their removal. Desalination, 239(1–3), 229–246.

  11. Bonnefoi, M. S., Belanger, S. E., Devlin, D. J., Doerrer, N. G., Embry, M. R., Fukushima, S., et al. (2010). Human and environmental health challenges for the next decade (2010–2020). Critical Reviews in Toxicology, 40(10), 893–911.

  12. Bottoni, P., Caroli, S., & Caracciolo, A. B. (2010). Pharmaceuticals as priority water contaminants. Toxicological and Environmental Chemistry, 92(3), 549–565.

  13. Bound, J. P., & Voulvoulis, N. (2005). Household disposal of pharmaceuticals as a pathway for aquatic contamination in the United Kingdom. Environmental Health Perspectives, 113(12), 1705–1711.

  14. Buchberger, W. W. (2007). Novel analytical procedures for screening of drug residues in water, waste water, sediment and sludge. Analytica Chimica Acta, 593(2), 129–139.

  15. Cunningham, V. L., Buzby, M., Hutchinson, T., Mastrocco, F., Parke, N., & Roden, N. (2006). Effects of human pharmaceuticals on aquatic life: next steps. Environmental Science and Technology, 40(11), 3456–3462.

  16. Dantas, R. F., Contreras, S., Sans, C., & Esplugas, S. (2008). Sulfamethoxazole abatement by means of ozonation. Journal of Hazardous Materials, 150(3), 790–794.

  17. De Araujo, M., & Seguro, A. C. (2002). Trimethoprim-sulfamethoxazole (TMP/SMX) potentiates indinavir nephrotoxicity. Antiviral Therapy, 7(3), 181–184.

  18. De Clercq, E. (2007). Advances in antiviral drug design (1st ed.). Amsterdam: Elsevier.

  19. De Clercq, E., & Field, H. J. (2006). Antiviral prodrugs—the development of successful prodrug strategies for antiviral chemotherapy. British Journal of Pharmacology, 147(1), 1–11.

  20. Djurdjevic, P., Laban, A., Markovic, S., & Jelikic-Stankov, M. (2004). Chemometric optimization of a RP-HPLC method for the simultaneous analysis of abacavir, lamivudine, and zidovudine in tablets. Analytical Letters, 37(13), 2649–2667.

  21. Durand, S. V. M., Hulst, M. M., De Wit, A. A. C., Mastebroek, L., & Loeffen, W. L. A. (2009). Activation and modulation of antiviral and apoptotic genes in pigs infected with classical swine fever viruses of high, moderate or low virulence. Archives of Virology, 154(9), 1417–1431.

  22. Escher, B. I., Baumgartner, R., Koller, M., Treyer, K., Lienert, J., & McArdell, C. S. (2011). Environmental toxicology and risk assessment of pharmaceuticals from hospital wastewater. Water Research, 45(1), 75–92.

  23. Fick, J., Lindberg, R. H., Tysklind, M., Haemig, P. D., Waldenström, J., Wallensten, A., et al. (2007). Antiviral oseltamivir is not removed or degraded in normal sewage water treatment: implications for development of resistance by influenza A virus. PLoS One, 2(10), 1–5.

  24. Fontana, R. J. (2009). Side effects of long term oral antiviral therapy for hepatitis B. Hepatology, 49(S5), S185–S195.

  25. Fu, J., & Jiang, H. (2010). Adsorbtion of amantadine hydrochloride wastewater: the choice of adsorbent. E-Product E-Service and E-Entertainment (ICEEE) International Conference, 7–9 November 2010, Henan, pp. 1–4.

  26. Galasso, G. J., Boucher, C. A. B., Cooper, D. A., & Katzenstein, D. A. (2002). Practical guidelines in antiviral therapy (1st ed.). Netherlands: Elsevier Science B.V.

  27. Germer, J., & Sinar, E. (2010). Pharmaceutical consumption and residuals potentially relevant to nutrient cycling in Greater Accra, Ghana. Journal of Agriculture and Rural Development in the Tropics and Subtropics (JARTS), 111(1), 41–53.

  28. Ghosh, G. C. (2009). Behavior of antibiotics and antiviral drugs in sewage treatment plants and risk associated with their widespread use under pandemic condition. Japan: Kyoto University.

  29. Ghosh, G. C., Nakada, N., Yamashita, N., & Tanaka, H. (2010a). Occurrence and fate of oseltamivir carboxylate (Tamiflu) and amantadine in sewage treatment plants. Chemosphere, 81(1), 13–17.

  30. Ghosh, G. C., Nakada, N., Yamashita, N., & Tanaka, H. (2010b). Oseltamivir carboxylate, the active metabolite of oseltamivir phosphate (Tamiflu), detected in sewage discharge and river water in Japan. Environmental Health Perspectives, 118(1), 103–107.

  31. Ghoshal, A. K., & Soldin, S. J. (2003). Improved method for concurrent quantification of antiretrovirals by liquid chromatography-tandem mass spectrometry. Therapeutic Drug Monitoring, 25(5), 541–543.

  32. Giese, M. (1998). DNA-antiviral vaccines: new developments and approaches—a review. Virus Genes, 17(3), 219–232.

  33. Goncalves, C., Perez, S., Osorio, V., Petrovic, M., Alpendurada, M. F., & Barcelo, D. (2011). Photofate of oseltamivir (Tamiflu) and oseltamivir carboxylate under natural and simulated solar irradiation: kinetics, identification of the transformation products, and environmental occurrence. Environmental Science and Technology, 45(10), 4307–4314.

  34. Heberer, T. (2002). Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data. Toxicology Letters, 131, 5–17.

  35. Howard, P. H., & Muir, D. C. G. (2011). Identifying new persistent and bioaccumulative organics among chemicals in commerce II: pharmaceuticals. Environmental Science and Technology, 45, 6938–6946.

  36. Hu, X., He, Z., & Hu, H. (2006). Research on catalyzed iron inner electrolysis method treating pharmaceutical wastewater of zidovudine production. Jiangsu Environmental Science and Technology, 19(4).

  37. Ikehata, K., Naghashkar, N. J., & El-Din, M. G. (2006). Degradation of aqueous pharmaceuticals by ozonation and advanced oxidation processes: a review. Ozone Science and Engineering, 28(6), 353–414.

  38. Jain, S., Vyas, R. K., Pandit, P., & Vyas, S. (2011). A review on fate of antiviral drugs in environment and detection techniques. International Journal of Environmental Sciences, 1(7), 1526–1541.

  39. Jarhult, J. D. (2012). Oseltamivir (Tamiflu) in the environment, resistance development in influenza A viruses of dabbling ducks and the risk of transmission of an oseltamivir-resistant virus to humans—a review. Infection Ecology and Epidemiology, 2, 1–9.

  40. Jean, J., Perrodin, Y., Pivot, C., Trepo, D., Perraud, M., Droguet, J., et al. (2012). Identification and prioritization of bioaccumulable pharmaceutical substances discharged in hospital effluents. Journal of Environmental Management, 103, 113–121.

  41. Jjemba, P. K. (2006). Excretion and ecotoxicity of pharmaceutical and personal care products in the environment. Ecotoxicology and Environmental Safety, 63(1), 113–130.

  42. Jung, B. H., Rezk, N. L., Bridges, A. S., Corbett, A. H., & Kashuba, A. D. M. (2007). Simultaneous determination of 17 antiretroviral drugs in human plasma for quantitative analysis with liquid chromatography-tandem mass spectrometry. Biomedical Chromatography, 21(10), 1095–1104.

  43. Kahn, C. M. (2005). The Merck veterinary manual (9th ed.). Whitehouse Station: Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc.

  44. Kapoor, N., Khandavilli, S., & Panchagnula, R. (2006). Simultaneous determination of lamivudine, stavudine and nevirapine in antiretroviral fixed dose combinations by high performance liquid chromatography. Analytica Chimica Acta, 570(1), 41–45.

  45. Klavarioti, M., Mantzavinos, D., & Kassinos, D. (2009). Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environment International, 35(2), 402–417.

  46. Kovalova, L., Siegrist, H., Singer, H., Wittmer, A., & McArdell, C. S. (2012). Hospital wastewater treatment by membrane bioreactor: performance and efficiency for organic micropollutant elimination. Environmental Science and Technology, 46, 1536–1545.

  47. Kummerer, K. (2008). Pharmaceuticals in the environment: sources, fate, effects and risks (3rd ed.). Berlin: Springer.

  48. Kummerer, K. (2009). The presence of pharmaceuticals in the environment due to human use—present knowledge and future challenges. Journal of Environmental Management, 90(8), 2354–2366.

  49. Langenkamp, H., Part, P., Erhardt, W., & Prüeß, A. (2001). Organic contaminants in sewage sludge for agricultural use. Soil and Waste Unit, Institute for Environment and Sustainability, European Commission Joint Research Centre.

  50. Li, L., Xu, B. Z., Lin, C. Y., & Hu, X. M. (2011). Synergetic degradation of zidovudine wastewater by ultrasonic and iron-carbon micro-electrolysis. Advanced Materials Research, 347, 1949–1952.

  51. Lienert, J., Koller, M., Konrad, J., McArdell, C. S., & Schuwirth, N. (2011). Multiple-criteria decision analysis reveals high stakeholder preference to remove pharmaceuticals from hospital wastewater. Environmental Science and Technology, 45, 3848–3857.

  52. Marzolini, C., Telenti, A., Buclin, T., Biollaz, J., & Decosterd, L. A. (2000). Simultaneous determination of the HIV protease inhibitors indinavir, amprenavir, saquinavir, ritonavir, nelfinavir and the non-nucleoside reverse transcriptase inhibitor efavirenz by high-performance liquid chromatography after solid-phase extraction. Journal of Chromatography. B, Biomedical Sciences and Applications, 740(1), 43–58.

  53. Mascolo, G., Balest, L., Cassano, D., Laera, G., Lopez, A., Pollice, A., et al. (2010a). Biodegradability of pharmaceutical industrial wastewater and formation of recalcitrant organic compounds during aerobic biological treatment. Bioresource Technology, 101(8), 2585–2591.

  54. Mascolo, G., Laera, G., Pollice, A., Cassano, D., Pinto, A., Salerno, C., et al. (2010b). Effective organics degradation from pharmaceutical wastewater by an integrated process including membrane bioreactor and ozonation. Chemosphere, 78(9), 1100–1109.

  55. Matsuo, H., Sakamoto, H., Arizono, K., & Shinohara, R. (2011). Behavior of pharmaceuticals in waste water treatment plant in Japan. Bulletin of Environmental Contamination and Toxicology, 87(1), 31–35.

  56. Mestankova, H., Schirmer, K., Escher, B. I., von Gunten, U., & Canonica, S. (2012). Removal of the antiviral agent oseltamivir and its biological activity by oxidative processes. Environmental Pollution, 161, 30–35.

  57. Ni, L., & Li, S. (2009). Treatment of ribavirin medicine wastewater by UBF system. Journal of Hohai University (Natural Sciences), 37(2), 133–137.

  58. Osborn, J. E., Gervais, K. G., Hernandez, S. R., Hodge, J. G., Lurie, N., Pavia, A. T., et al. (2008). A report by committee on implementation of antiviral medication strategies for an influenza, pandemic antivirals for pandemic influenza: guidance on developing a distribution and dispensing program (p. 124). Washington: Institute of Medicine of the National Academies.

  59. Ottmar, K. J., Colosi, L. M., & Smith, J. A. (2010). Development and application of a model to estimate wastewater treatment plant prescription pharmaceutical influent loadings and concentrations. Bulletin of Environmental Contamination and Toxicology, 84(5), 507–512.

  60. Palacios, M. L., Demasi, G., Pizzorno, M. T., & Segall, A. I. (2005). Validation of an HPLC method for the determination of valacyclovir in pharmaceutical dosage. Journal of Liquid Chromatography and Related Technologies, 28(5), 751–762.

  61. Pereira, A. S., Kenney, K. B., Cohen, M. S., Hall, J. E., Eron, J. J., Tidwell, R. R., et al. (2000). Simultaneous determination of lamivudine and zidovudine concentrations in human seminal plasma using high-performance liquid chromatography and tandem mass spectrometry. Journal of Chromatography. B, Biomedical Sciences and Applications, 742(1), 173–183.

  62. Phillips, P. J., Smith, S. G., Kolpin, D. W., Zaugg, S. D., Buxton, H. T., Furlong, E. T., et al. (2010). Pharmaceutical formulation facilities as sources of opioids and other pharmaceuticals to wastewater treatment plant effluents. Environmental Science and Technology, 4, 167–184.

  63. Prasse, C., Schlusener, M. P., Schulz, R., & Ternes, T. A. (2010). Antiviral drugs in wastewater and surface waters: a new pharmaceutical class of environmental relevance? Environmental Science and Technology, 44(5), 1728–1735.

  64. Prasse, C., Wagner, M., Schulz, R., & Ternes, T. A. (2011). Biotransformation of the antiviral drugs acyclovir and penciclovir in activated sludge treatment. Environmental Science and Technology, 45, 2761–2769.

  65. Prasse, C., Wagner, M., Schulz, R., & Ternes, T. A. (2012). Oxidation of the antiviral drug acyclovir and its biodegradation product carboxy-acyclovir with ozone: kinetics and identification of oxidation products. Environmental Science and Technology, 46, 2169–2178.

  66. Reynolds, K. A. (2011). Treatment: impact of increased use of medicines and water quality. Arizona: University of Arizona College of Public Health.

  67. Sacca, M. L., Accinelli, C., Fick, J., Lindberg, R., & Olsen, B. (2009). Environmental fate of the antiviral drug Tamiflu in two aquatic ecosystems. Chemosphere, 75(1), 28–33.

  68. Sheahan, M. (2008). Guidelines for the environmentally-safe disposal of pharmaceutical products. Madison: University of Wisconsin-Madison School of Pharmacy.

  69. Singer, A. C., Nunn, M. A., Gould, E. A., & Johnson, A. C. (2007). Potential risks associated with the proposed widespread use of Tamiflu. Environmental Health Perspectives, 115(1), 102–106.

  70. Singer, A. C., Howard, B. M., Johnson, A. C., Knowles, C. J., Jackman, S., Accinelli, C., et al. (2008). Meeting report: risk assessment of Tamiflu use under pandemic conditions. Environmental Health Perspectives, 116(11), 1563–1567.

  71. Singer, A. C., Colizza, V., Schmitt, H., Andrews, J., Balcan, D., Huang, W. E., et al. (2011). Assessing the ecotoxicologic hazards of a pandemic influenza medical response. Environmental Health Perspectives, 119(8), 1084–1090.

  72. Singh, R. K., Kumar, S., Kumar, S., & Kumar, A. (2008). Development of parthenium based activated carbon and its utilization for adsorptive removal of p-cresol from aqueous solution. Journal of Hazardous Materials, 155, 523–535.

  73. Slater, F. R., Singer, A. C., Turner, S., Barr, J. J., & Bond, P. L. (2011). Pandemic pharmaceutical dosing effects on wastewater treatment: no adaptation of activated sludge bacteria to degrade the antiviral drug oseltamivir (Tamiflu®) and loss of nutrient removal performance. FEMS Microbiology Letters, 315, 17–22.

  74. Söderström, H., Järhult, J. D., Olsen, B., Lindberg, R. H., Tanaka, H., & Fick, J. (2009). Detection of the antiviral drug oseltamivir in aquatic environments. PLoS One, 4(6), 1–4.

  75. Soong, G., Muir, A., Gomez, M. I., Waks, J., Reddy, B., Planet, P., et al. (2006). Bacterial neuraminidase facilitates mucosal infection by participating in biofilm production. Journal of Clinical Investigation, 116(8), 2297–2305.

  76. Sponza, D. T., & Demirden, P. I. (2007). Treatability of sulfamerazine in sequential upflow anaerobic sludge blanket reactor (UASB)/completely stirred tank reactor (CSTR) processes. Separation and Purification Technology, 56(1), 108–117.

  77. Strathmann, H. (1976). Membrane separation processes in advanced waste water treatment. Pure and Applied Chemistry, 46, 213–220.

  78. Straub, J. O. (2009). An environmental risk assessment for oseltamivir (Tamiflu®) for sewage works and surface waters under seasonal-influenza- and pandemic-use conditions. Ecotoxicology and Environmental Safety, 72(6), 1625–1634.

  79. Takanami, R., Ozaki, H., Giri, R. R., Taniguchi, S., & Hayashi, S. (2012). Antiviral drugs zanamivir and oseltamivir found in wastewater and surface water in Osaka, Japan. Journal of Water and Environment Technology, 10(1), 57–68.

  80. Tong, A. Y. C., Braund, R., Tan, E. W., Tremblay, L. A., Stringer, T., Trought, K., et al. (2011). UV-induced photodegradation of oseltamivir (Tamiflu) in water. Environmental Chemistry, 8(2), 182–189.

  81. Tyring, S. K. (2004). Antiviral agents, vaccines, and immunotherapies. Florida: Informa Healthcare.

  82. Uslu, B., Özkan, S. A., & Sentürk, Z. (2006). Electrooxidation of the antiviral drug valacyclovir and its square-wave and differential pulse voltammetric determination in pharmaceuticals and human biological fluids. Analytica Chimica Acta, 555(2), 341–347.

  83. Vanková, M. (2010). Biodegradability analysis of pharmaceuticals used in developing countries; screening with OxiTop C-110 (p. 73). Finland: Tampere University of Technology.

  84. Wang, Y. Y., Shan, B. Q., Sun, L. P., Li, Z. W., Guo, J., & Yin, R. D. (2010). Study on pretreatment of wastewater from lamivudine production by iron-carbon microelectrolysis process. Industrial Water and Wastewater, 41(6), 49–51.

  85. WHO. (2010). http://www.who.int/hiv/data/en/. Accessed 30 March 2012.

  86. WHO. (2011). http://www.who.int/csr/don//en/index.html. Accessed 24 August 2011.

  87. Yi-zhong, J., Yue-feng, Z., & Wei, L. (2002). Experimental study on micro-electrolysis technology for pharmaceutical wastewater treatment. Journal of Zhejiang University-Science A, 3(4), 401–404.

  88. Zeng, M., Cui, W., Zhao, Y., Liu, Z., Dong, S., & Guo, Y. (2008). Antiviral active peptide from oyster. Chinese Journal of Oceanology and Limnology, 26(3), 307–312.

  89. Zou, Q., Fu, J. X., & Jiang, H. (2009). Treatment of amantadine wastewater with the crystallization method [J]. Liaoning Chemical Industry, 12(38), 861–862.

Download references

Author information

Correspondence to Ajay K. Dalai.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jain, S., Kumar, P., Vyas, R.K. et al. Occurrence and Removal of Antiviral Drugs in Environment: A Review. Water Air Soil Pollut 224, 1410 (2013). https://doi.org/10.1007/s11270-012-1410-3

Download citation

Keywords

  • Antiviral drugs
  • Wastewater
  • Biodegradability
  • Occurrence
  • Risks
  • Removal