Water, Air, & Soil Pollution

, 224:1379 | Cite as

The Impact of Process Sequences on Pollutant Removal Efficiencies in Tannery Wastewater Treatment



A laboratory-scale study was conducted to determine the removal efficiencies of nine contaminants from a tannery wastewater using a number of physicochemical processes. Coagulation–flocculation using bittern as coagulant, oxidation-utilizing ozone, and adsorption using activated carbon were applied separately and in different sequences. Jar tests were utilized to conduct the experimental work. Except for arsenic, the highest removal efficiencies were recorded when coagulation/flocculation was conducted on the alkalized samples using a bittern dose of 5 mL/L. Activated carbon adsorption improved removal efficiencies of several contaminants. The coagulation/flocculation–adsorption sequence using the optimum dose of 5 mL/L of bittern resulted in high removal efficiencies for total suspended solids (TSS) (97 % ± 1), apparent color (100 % ± 0), turbidity (97 % ± 1), total nitrogen (86 % ± 1), and chromium (100 % ± 0). On the other hand, the same sequence resulted in moderate removal efficiencies for chemical oxygen demand (COD) (72 % ± 7) and total phosphorus (74 % ± 5) and relatively low removals for biochemical oxygen demand (BOD) (55 % ± 10) and arsenic (42 % ± 14). The removal efficiencies for the different tested sequences demonstrated that each sequence did improve the removal efficiencies for most of the parameters tested and consequently, the quality of tannery effluent. However, no single optimum sequence was capable of attaining high removal efficiencies for all nine parameters.


Adsorption Bittern Coagulation–flocculation Oxidation Tannery wastewater 



The authors acknowledge the Environmental and Water Resources Research Center at the American University of Beirut for providing their facilities to conduct the research.


  1. Aber, S., Salari, D., & Parsa, M. R. (2010). Employing the Taguchi method to obtain the optimum conditions of coagulation–flocculation process in tannery wastewater treatment. Chemical Engineering Journal, 162(1), 127–134.CrossRefGoogle Scholar
  2. Ahn, D. H., Chang, W. S., & Yoon, T. I. (1999). Dyestuff wastewater treatment using chemical oxidation, physical adsorption and fixed bed biofilm process. Process Biochemistry, 34(5), 429–439.CrossRefGoogle Scholar
  3. American Public Health Association (APHA), American Water Works Association (AWWA), Water Environment Federation (WEF) (2005). Standard methods for the examination of water and wastewater. twenty-first ed., Washington, D.C.Google Scholar
  4. Apaydin, O., Kurt, U., & Gönüllü, M. T. (2009). An investigation on the treatment of tannery wastewater by electrocoagulation. Global Nest Journal, 11(4), 546–555.Google Scholar
  5. Ates, E., Orhon, D., & Tünay, O. (1997). Characterization of tannery wastewaters for pretreatment—selected case studies. Water Science and Technology, 36(2–3), 217–223.CrossRefGoogle Scholar
  6. Ayoub, G. M., Merehbi, F., Abdallah, R., Acra, A., & El Fadel, M. E. (1999). Coagulation of alkalinized municipal wastewater using seawater bittern. Water Environment Research, 71(4), 443–453.CrossRefGoogle Scholar
  7. Ayoub, G. M., Merhebi, F., Acra, A., El, F. M., & Koopman, B. (2000). Seawater bittern for the treatment of alkalized industrial effluents. Water Research, 34(2), 640–656.CrossRefGoogle Scholar
  8. Ayoub, G. M., El-Fadel, M., Acra, A., & Abdallah, R. (2001a). Critical density index for the solar production of bittern from seawater. International Journal of Environmental Studies, 58(1), 85–97.CrossRefGoogle Scholar
  9. Ayoub, G. M., Semerjian, L., El-Fadel, M., & Koopman, B. (2001b). Heavy metal removal by coagulation with seawater liquid bittern. Journal of Environmental Engineering, Am Soc Civil Eng, 127(3), 196–207.Google Scholar
  10. Ayoub, G. M., Hamzeh, A., & Semerjian, L. (2011). Post treatment of tannery wastewater using lime/bittern coagulation and activated carbon adsorption. Desalination, 273(2–3), 359–365.CrossRefGoogle Scholar
  11. Bes-Piá, A., Cuartas-Uribe, B., Mendoza-Roca, J. A., Galiana-Aleixandre, M. V., Iborra-Clar, M. I., & Alcaina-Miranda, M. I. (2008). Pickling wastewater reclamation by means of nanofiltration. Desalination, 221(1–3), 225–233.CrossRefGoogle Scholar
  12. Blanco, J., Torrades, F., De la Varga, M., & García-Montaño, J. (2012). Fenton and biological-Fenton coupled processes for textile wastewater treatment and reuse. Desalination, 286(1), 394–399.CrossRefGoogle Scholar
  13. Bódalo, A., Gómez, J. L., Gómez, E., Hidalgo, A. M., & Alemán, A. (2005). Viability study of different reverse osmosis membranes for application in the tertiary treatment of wastes from the tanning industry. Desalination, 180(1–3), 277–284.CrossRefGoogle Scholar
  14. Dantas, T. L. P., Jose, H. J., & Moreira, R. F. P. M. (2003). Fenton and photo-Fenton oxidation of tannery wastewater. Acta Scientiarum. Tech, 25(1), 91–95.Google Scholar
  15. De Gisi, S., Galasso, M., & De Feo, G. (2009). Treatment of tannery wastewater through the combination of a conventional activated sludge process and reverse osmosis with a plane membrane. Desalination, 249(1), 337–342.CrossRefGoogle Scholar
  16. Deepali, K. K., Gangwar, R., & Joshi, B. D. (2009). Comparative study of physico-chemical properties of effluent from tannery industries. Indian Journal of Environmental Sciences, 3, 49–52.Google Scholar
  17. Di Iaconi, C., Ramadori, R., & Lopez, A. (2009). The effect of ozone on tannery wastewater biological treatment at demonstrative scale. Bioresour Techno, 100(23), 6121–6124.CrossRefGoogle Scholar
  18. Dogruel, S., Genceli, E. A., Babuna, F. G., & Orhon, D. (2004). Ozonation of nonbiodegradable organics in tannery wastewater. Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances & Environmental Engineering, 39(7), 1705–1715.CrossRefGoogle Scholar
  19. Ellouze, E., Tahri, N., & Ben Amar, R. (2012). Enhancement of textile wastewater treatment process using Nanofiltration. Desalination, 286(1), 16–23.CrossRefGoogle Scholar
  20. Fababuj-Roger, M., Mendoza-Roca, J. A., Galiana-Aleixandre, M. V., Bes-Piá, A., Cuartas-Uribe, B., & Iborra-Clar, A. (2007). Reuse of tannery wastewaters by combination of ultrafiltration and reverse osmosis after a conventional physical–chemical treatment. Desalination, 204(1–3), 219–226.CrossRefGoogle Scholar
  21. Feng, J. W., Sun, Y. B., Zheng, Z., Zhang, J. B., Li, S., & Tian, Y. C. (2007). Treatment of tannery wastewater by electrocoagulation. Journal of Environmental Sciences, 19(12), 1409–1415.CrossRefGoogle Scholar
  22. Ganesh, R., Balaji, G., & Ramanujam, R. A. (2006). Biodegradation of tannery wastewater using sequencing batch reactor-respirometric assessment. Bioresource Technology, 97(15), 1815–1821.CrossRefGoogle Scholar
  23. Goltara, A., Martinez, J., & Mendez, R. (2003). Carbon and nitrogen removal from tannery wastewater with a membrane bioreactor. Water Science and Technology, 48(1), 207–214.Google Scholar
  24. Haydar, S., & Aziz, J. A. (2009a). Characterization and treatability studies of tannery wastewater using chemically enhanced primary treatment (CEPT)—a case study of Saddiq Leather Works. Journal of Hazardous Materials, 163(2–3), 1076–1083.CrossRefGoogle Scholar
  25. Haydar, S., & Aziz, J. A. (2009b). Coagulation-flocculation studies of tannery wastewater using combination of alum with cationic and anionic polymers. Journal of Hazardous Materials, 168(2–3), 1035–1040.CrossRefGoogle Scholar
  26. Jawahar, A. J., Chinnsdurai, M., Ponselvan, J. K. S., & Annadurai, G. (1998). Pollution from tanneries and options for treatment of effluent. Ind J Environ Protec, 18, 672–672.Google Scholar
  27. Kabdasli, I., Tünay, O., & Orhon, D. (1993). The treatability of chromium tannery wastes. Water Science and Technology, 28(2), 97–105.Google Scholar
  28. Kim, T. H., Park, C., Lee, J., Shin, E. B., & Kim, S. (2002). Pilot scale treatment of textile wastewater by combined process (fluidized biofilm process–chemical coagulation–electrochemical oxidation). Water Research, 36(16), 3979–3988.CrossRefGoogle Scholar
  29. Koteswari, Y. N., & Ramanibai, R. (2003). The effect of tannery effluent on the colonization rate of plankters: a microcosm study. Turk J Biol, 27, 163–170.Google Scholar
  30. Kurt, U., Apaydin, O., & Gonullu, M. T. (2007). Reduction of COD in wastewater from an organized tannery industrial region by electro-Fenton process. Journal of Hazardous Materials, 143(1–2), 33–40.CrossRefGoogle Scholar
  31. Leta, S., Assefa, F., Gumaelius, L., & Dalhammar, G. (2004). Biological nitrogen and organic matter removal from tannery wastewater in pilot plant operations in Ethiopia. Applied Microbiol Biotechnol, 66(3), 333–339.CrossRefGoogle Scholar
  32. Lopez, A., Ricco, G., Ciannarella, R., Rozzi, A., Di Pinto, A. C., & Passino, R. (1999). Textile wastewater reuse: ozonation of membrane concentrated secondary effluent. Water Science and Technology, 40(4–5), 99–105.CrossRefGoogle Scholar
  33. Mandal, T., Dasgupta, D., Mandal, S., & Datta, S. (2010). Treatment of leather industry wastewater by aerobic biological and Fenton oxidation process. Journal of Hazardous Materials, 180(1–3), 204–211.CrossRefGoogle Scholar
  34. Prabhavathy, C., & De, S. (2010). Treatment of fatliquoring effluent from a tannery using membrane separation process: experimental and modeling. Journal of Hazardous Materials, 176(1–3), 434–443.CrossRefGoogle Scholar
  35. Preethi, V., Parama Kalyani, K. S., Iyappan, K., Srinivasakannan, C., Balasubramaniam, N., & Vedaraman, N. (2009). Ozonation of tannery effluent for removal of cod and color. Journal of Hazardous Materials, 166(1), 150–154.CrossRefGoogle Scholar
  36. Rajalo, G., & Petrovskaya, T. (1996). Selective electrochemical oxidation of sulphides in tannery wastewater. Environmental Technology, 17(6), 605–612.CrossRefGoogle Scholar
  37. Rameshraja, D., & Suresh, S. (2011). Treatment of tannery wastewater by various oxidation and combined processes. Int J Environ Res, 5(2), 349–360.Google Scholar
  38. Ryu, H. D., Lee, S. I., & Chung, K. Y. (2007). Chemical oxygen demand removal efficiency of biological treatment process treating tannery wastewater following seawater flocculation. Environmental Engineering Science, 24(3), 394–399.CrossRefGoogle Scholar
  39. Scholz, W. G., Rougeä, P., Boädalo, A., & Leitz, U. (2005). Desalination of mixed tannery effluent with membrane bioreactor and reverse osmosis treatment. Environmental Science and Technology, 39(21), 8505–8511.CrossRefGoogle Scholar
  40. Song, Z., Williams, C. J., & Edyvean, R. G. J. (2001). Coagulation and anaerobic digestion of tannery wastewater. Process Safety and Environmental Protection, 79(1), 23–28.CrossRefGoogle Scholar
  41. Song, Z., Williams, C. J., & Edyvean, R. G. J. (2004). Treatment of tannery wastewater by chemical coagulation. Desalination, 164(3), 249–259.CrossRefGoogle Scholar
  42. Srinivasan, S. V., Mary, G. P. S., Kalyanaraman, C., Sureshkumar, P. S., Sri Balakameswari, K., Suthanthararajan, R., & Ravindranath, E. (2012). Combined advanced oxidation and biological treatment of tannery effluent. Clean Technologies and Environmental Policy, 14(2), 251–256.CrossRefGoogle Scholar
  43. Szpyrkowicz, L., Naumczyk, J., & Zilio-Grandi, F. (1995). Electrochemical treatment of tannery wastewater using TiPt and Ti/Pt/Ir electrodes. Water Research, 29(2), 517–524.CrossRefGoogle Scholar
  44. Szpyrkowicz, L., Kaul, S. N., Neti, R. N., & Satyanarayan, S. (2005). Influence of anode material on electrochemical oxidation for the treatment of tannery wastewater. Water Research, 39(8), 1601–1613.CrossRefGoogle Scholar
  45. Sundarapandiyan, S., Chandrasekar, R., Ramanaiah, B., Krishnan, S., & Saravanan, P. (2010). Electrochemical oxidation and reuse of tannery saline wastewater. Journal of Hazardous Materials, 180(1–3), 197–203.CrossRefGoogle Scholar
  46. Suresh, V., Kanthimathi, M., Thanikaivelan, P., Raghava Rao, J., & Unni Nair, B. (2001). An improved product-process for cleaner chrome tanning in leather processing. Journal of Cleaner Production, 9(6), 483–491.CrossRefGoogle Scholar
  47. Tahir, S. S., & Naseem, R. (2007). Removal of Cr(III) from tannery wastewater by adsorption onto Bentonite clay. Separation and Purification Technology, 53(3), 312–321.CrossRefGoogle Scholar
  48. Tiravanti, G., Petruzzelli, D., & Passino, R. (1997). Pretreatment of tannery wastewaters by an ion exchange process for Cr(III) removal and recovery. Water Science and Technology, 36(2–3), 197–207.CrossRefGoogle Scholar
  49. Tare, V., Gupta, S., & Bose, P. (2003). Case studies on biological treatment of tannery effluents in India. Journal of the Air & Waste Management Association, 53, 976–982.CrossRefGoogle Scholar
  50. Tunay, O., Orhon, D., & Kabdasli, I. (1994). Pretreatment requirements for leather tanning industry wastewaters. Water Science and Technology, 29(9), 121–128.Google Scholar
  51. U.S. Environmental Protection Agency (USEPA) (1997). Federal guidelines on state and local pretreatment programs, Vol. 2. Washington, D.C.Google Scholar
  52. Vidal, G., Nieto, J., Mansilla, H. D., & Bornhardt, C. (2004). Combined oxidative and biological treatment of separated streams of tannery wastewater. Water Science and Technology, 49(4), 287–292.Google Scholar
  53. Vlyssides, A. G., & Israilides, C. J. (1997). Detoxification of tannery waste liquors with an electrolysis system. Environmental Pollution, 97(1–2), 147–152.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • George M. Ayoub
    • 1
  • Abeer Hamzeh
    • 1
  • Mahmoud Al-Hindi
    • 2
  1. 1.Civil and Environmental Engineering DepartmentAUBBeirutLebanon
  2. 2.Chemical Engineering ProgramAUBBeirutLebanon

Personalised recommendations