Water, Air, & Soil Pollution

, 224:1373 | Cite as

Influence of Saharan Dust Transport Events on PM2.5 Concentrations and Composition over Athens

  • E. Remoundaki
  • A. Papayannis
  • P. Kassomenos
  • E. Mantas
  • P. Kokkalis
  • M. Tsezos
Article

Abstract

The evaluation of the contribution of natural sources to PM10 and PM2.5 concentrations is a priority especially for the countries of European south strongly influenced by Saharan dust transport events. Daily PM2.5 concentrations and composition were monitored at an urban site at 14 m above ground level, at the National Technical University of Athens campus from February to December 2010. The typical dust constituents Si, Al, Fe, K, Ca, Mg, and Ti were determined by wavelength dispersive X-ray fluorescence spectrometry (WDXRF). Sulfur, a tracer of anthropogenic origin and major constituent of PM2.5, was determined by both WDXRF and ionic chromatography. The contribution of dust and sulfates in PM2.5 was calculated from the analytical determinations. An annual mean of 20 μg/m3 was calculated from the mean daily PM2.5 concentrations data. Twenty-two per cent of daily concentrations of PM2.5 reached or exceeded the EU annual target concentration of 25 μg/m3. The exceedances occurred during 13 short periods of 1–4 days. Back-trajectory analysis was performed for these periods in order to identify the air masses origin. From these periods, ten periods were associated to Saharan dust transport events. The most intense dust transport event occurred between February 17th and 20th and was responsible for the highest recorded PM2.5 concentration of 100 μg/m3 where the dust contribution in PM2.5 reached 96 %. The other dust transport events were less intense and corresponded to less pronounced enhancements of PM2.5 concentrations, and their contribution ranged from 15 to 39 % in PM2.5 concentrations. Air masses originated from northwest Africa while the influence of central Sahara was quite smaller.

Keywords

Saharan dust PM2.5 Crustal origin elements Sulfur Urban environment 

References

  1. Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe (2008). European Parliament and CouncilGoogle Scholar
  2. Avila, A., Queralt-Mitjans, I., & Alarcon, M. (1997). Mineralogical composition of African dust delivered by red rains over northeastern Spain. Journal of Geophysical Research-Atmospheres, 102(D18), 21977–21996. doi:10.1029/97JD00485.CrossRefGoogle Scholar
  3. Blanco, A., De Tomasi, F., Filippo, E., Manno, D., Perrone, M. R., Serra, A., et al. (2003). Characterization of African dust over southern Italy. Atmospheric Chemistry and Physics, 3, 2147–2159.CrossRefGoogle Scholar
  4. Borbely-Kiss, I., Kiss, A. Z., Koltay, E., Szabo, G., & Bozo, L. (2004). Saharan dust episodes in Hungarian aerosol: Elemental signatures and transport trajectories. Journal of Aerosol Science, 35(10), 1205–1224. doi:10.1016/j.jaerosci.2004.05.001.CrossRefGoogle Scholar
  5. Borge, R., Lumbreras, J., Vardoulakis, S., Kassomenos, P., & Rodriguez, E. (2007). Analysis of long-range transport influences on urban PM10 using two-stage atmospheric trajectory clusters. Atmospheric Environment, 41(21), 4434–4450. doi:10.1016/j.atmosenv.2007.01.053.CrossRefGoogle Scholar
  6. Chaloulakou, A., Kassomenos, P., Spyrellis, N., Demokritou, P., & Koutrakis, P. (2003). Measurements of PM10 and PM2.5 particle concentrations in Athens, Greece. Atmospheric Environment, 37(5), 649–660. doi:10.1016/S1352-2310(02)00898-1.CrossRefGoogle Scholar
  7. Chiapello, I., Bergametti, G., Chatenet, B., Bousquet, P., Dulac, F., & Soares, E. S. (1997). Origins of African dust transported over the northeastern tropical Atlantic. Journal of Geophysical Research-Atmospheres, 102(D12), 13701–13709. doi:10.1029/97JD00259.CrossRefGoogle Scholar
  8. Coz, E., Gomez-Moreno, F. J., Pujadas, M., Casuccio, G. S., Lersch, T. L., & Artinano, B. (2009). Individual particle characteristics of North African dust under different long-range transport scenarios. Atmospheric Environment, 43(11), 1850–1863. doi:10.1016/j.atmosenv.2008.12.045.CrossRefGoogle Scholar
  9. Dulac, F., Moulin, C., Lambert, C. E., Guillard, F., Poitou, J., Guelle, W., et al. (1996). Quantitative remote sensing of African dust transport to the Mediterranean. In S. Guerzoni & R. Chester (Eds.), The impact of desert dust across the Mediterranean (pp. 25–49). The Netherlands: Kluwer Academic Publisher.Google Scholar
  10. Engelstaedter, S., & Washington, R. (2007). Atmospheric controls on the annual cycle of North African dust. Journal of Geophysical Research-Atmospheres, 112(D3), 103. doi:10.1029/2006jd007195.Google Scholar
  11. Formenti, P., Andreae, M. O., Lange, L., Roberts, G., Cafmeyer, J., Rajta, I., et al. (2001). Saharan dust in Brazil and Suriname during the large-scale biosphere-atmosphere experiment in Amazonia (LBA)-Cooperative LBA Regional Experiment (CLAIRE) in March 1998. Journal of Geophysical Research-Atmospheres, 106(D14), 14919–14934. doi:10.1029/2000JD900827.CrossRefGoogle Scholar
  12. Formenti, P., Elbert, W., Maenhaut, W., Haywood, J., & Andreae, M. O. (2003). Chemical composition of mineral dust aerosol during the Saharan Dust Experiment (SHADE) airborne campaign in the Cape Verde region, September 2000. Journal of Geophysical Research-Atmospheres, 108(D18), 8576. doi:10.1029/2002jd002648.CrossRefGoogle Scholar
  13. Fotiadi, A., Hatzianastassiou, N., Drakakis, E., Matsoukas, C., Pavlakis, K. G., Hatzidimitriou, D., et al. (2006). Aerosol physical and optical properties in the Eastern Mediterranean Basin, Crete, from Aerosol Robotic Network data. Atmospheric Chemistry and Physics, 6, 5399–5413.CrossRefGoogle Scholar
  14. Ganor, E., & Foner, H. A. (1996). The mineralogical and chemical properties and the behaviour of Aeolian Saharan dust over Israel. In S. Gurezoni & R. Chester (Eds.), The impact of desert dust across the Mediterranean (pp. 163–172). Dordrecht: Kluwer Academic Publishers.Google Scholar
  15. Gerasopoulos, E., Amiridis, V., Kazadzis, S., Kokkalis, P., Eleftheratos, K., Andreae, M. O., et al. (2011). Three-year ground based measurements of aerosol optical depth over the Eastern Mediterranean: The urban environment of Athens. Atmospheric Chemistry and Physics, 11(5), 2145–2159. doi:10.5194/acp-11-2145-2011.CrossRefGoogle Scholar
  16. Gerasopoulos, E., Koulouri, E., Kalivitis, N., Kouvarakis, G., Saarikoski, S., Makela, T., et al. (2007). Size-segregated mass distributions of aerosols over Eastern Mediterranean: Seasonal variability and comparison with AERONET columnar size-distributions. Atmospheric Chemistry and Physics, 7(10), 2551–2561.CrossRefGoogle Scholar
  17. Gerasopoulos, E., Kouvarakis, G., Babasakalis, P., Vrekoussis, M., Putaud, J. P., & Mihalopoulos, N. (2006). Origin and variability of particulate matter (PM10) mass concentrations over the eastern Mediterranean. Atmospheric Environment, 40(25), 4679–4690. doi:10.1016/j.atmosenv.2006.04.020.CrossRefGoogle Scholar
  18. Gobbi, G. P., Barnaba, F., & Ammannato, L. (2007). Estimating the impact of Saharan dust on the year 2001 PM10 record of Rome, Italy. Atmospheric Environment, 41(2), 261–275. doi:10.1016/j.atmosenv.2006.08.036.CrossRefGoogle Scholar
  19. Grivas, G., Chaloulakou, A., & Kassomenos, P. (2008). An overview of the PM10 pollution problem, in the Metropolitan area of Athens Greece. Assessment of controlling factors and potential impact of long range transport. Science of the Total Environment, 389(1), 165–177. doi:10.1016/j.scitotenv.2007.08.048.CrossRefGoogle Scholar
  20. Guieu, C., Loye-Pilot, M. D., Ridame, C., & Thomas, C. (2002). Chemical characterization of the Saharan dust end-member: Some biogeochemical implications for the western Mediterranean Sea. Journal of Geophysical Research-Atmospheres, 107(D15), 4258. doi:10.1029/2001jd000582.CrossRefGoogle Scholar
  21. Israelevich, P. L., Levin, Z., Joseph, J. H., & Ganor, E. (2002). Desert aerosol transport in the Mediterranean region as inferred from the TOMS aerosol index. Journal of Geophysical Research-Atmospheres, 107(D21), 4572. doi:10.1029/2001jd002011.CrossRefGoogle Scholar
  22. Kalivitis, N., Gerasopoulos, E., Vrekoussis, M., Kouvarakis, G., Kubilay, N., Hatzianastassiou, N., et al. (2007). Dust transport over the eastern Mediterranean derived from total ozone mapping spectrometer, Aerosol Robotic Network, and surface measurements. Journal of Geophysical Research-Atmospheres, 112(D3), 202. doi:10.1029/2006jd007510.Google Scholar
  23. Karageorgos, E. T., & Rapsomanikis, S. (2007). Chemical characterization of the inorganic fraction of aerosols and mechanisms of the neutralization of atmospheric acidity in Athens, Greece. Atmospheric Chemistry and Physics, 7(11), 3015–3033.CrossRefGoogle Scholar
  24. Kassomenos, P., Vardoulakis, S., Borge, R., Lumbreras, J., Papaloukas, C., & Karakitsios, S. (2010). Comparison of statistical clustering techniques for the classification of modelled atmospheric trajectories. Theoretical and Applied Climatology, 102(1–2), 1–12. doi:10.1007/s00704-009-0233-7.CrossRefGoogle Scholar
  25. Kocak, M., Mihalopoulos, N., & Kubilay, N. (2007). Chemical composition of the fine and coarse fraction of aerosols in the northeastern Mediterranean. Atmospheric Environment, 41(34), 7351–7368. doi:10.1016/j.atmosenv.2007.05.011.CrossRefGoogle Scholar
  26. Koukouli, M. E., Kazadzis, S., Amiridis, V., Ichoku, C., Balis, D. S., & Bais, A. F. (2010). Signs of a negative trend in the MODIS aerosol optical depth over the Southern Balkans. Atmospheric Environment, 44(9), 1219–1228. doi:10.1016/j.atmosenv.2009.11.024.CrossRefGoogle Scholar
  27. Koulouri, E., Saarikoski, S., Theodosi, C., Markaki, Z., Gerasopoulos, E., Kouvarakis, G., et al. (2008). Chemical composition and sources of fine and coarse aerosol particles in the eastern Mediterranean. Atmospheric Environment, 42(26), 6542–6550. doi:10.1016/j.atmosenv.2008.04.010.CrossRefGoogle Scholar
  28. Krueger, B. J., Grassian, V. H., Cowin, J. P., & Laskin, A. (2004). Heterogeneous chemistry of individual mineral dust particles from different dust source regions: The importance of particle mineralogy. Atmospheric Environment, 38(36), 6253–6261. doi:10.1016/j.atmosenv.2004.07.010.CrossRefGoogle Scholar
  29. Lazaridis, M., Dzumbova, L., Kopanakis, I., Ondracek, J., Glytsos, T., Aleksandropoulou, V., et al. (2008). PM10 and PM2.5 levels in the eastern Mediterranean (Akrotiri research station, Crete, Greece). Water, Air, and Soil Pollution, 189(1–4), 85–101. doi:10.1007/s11270-007-9558-y.CrossRefGoogle Scholar
  30. Manoli, E., Voutsa, D., & Samara, C. (2002). Chemical characterization and source identification/apportionment of fine and coarse air particles in Thessaloniki, Greece. Atmospheric Environment, 36(6), 949–961. doi:10.1016/S1352-2310(01)00486-1.CrossRefGoogle Scholar
  31. Markou, M. T., & Kassomenos, P. (2010). Cluster analysis of five years of back trajectories arriving in Athens, Greece. Atmospheric Research, 98(2–4), 438–457. doi:10.1016/j.atmosres.2010.08.006.CrossRefGoogle Scholar
  32. Mendez, J., Guieu, C., & Adkins, J. (2010). Atmospheric input of manganese and iron to the ocean: Seawater dissolution experiments with Saharan and North American dusts. Marine Chemistry, 120(1–4), 34–43. doi:10.1016/j.marchem.2008.08.006.CrossRefGoogle Scholar
  33. Mihalopoulos, N., Kerminen, V. M., Kanakidou, M., Berresheim, H., & Sciare, J. (2007). Formation of particulate sulfur species (sulfate and methanesulfonate) during summer over the Eastern Mediterranean: A modelling approach. Atmospheric Environment, 41(32), 6860–6871. doi:10.1016/j.atmosenv.2007.04.039.CrossRefGoogle Scholar
  34. Mitsakou, C., Kallos, G., Papantoniou, N., Spyrou, C., Solomos, S., Astitha, M., et al. (2008). Saharan dust levels in Greece and received inhalation doses. Atmospheric Chemistry and Physics, 8(23), 7181–7192.CrossRefGoogle Scholar
  35. Moreno, T., Querol, X., Alastueya, A., Viana, M., & Gibbons, W. (2005). Exotic dust incursions into central Spain: Implications for legislative controls on atmospheric particulates. Atmospheric Environment, 39(33), 6109–6120. doi:10.1016/j.atmosenv.2005.06.038.CrossRefGoogle Scholar
  36. Papayannis, A., Amiridis, V., Mona, L., Tsaknakis, G., Balis, D., Bosenberg, J., et al. (2008). Systematic lidar observations of Saharan dust over Europe in the frame of EARLINET (2000–2002). Journal of Geophysical Research-Atmospheres, 113(D10), 204. doi:10.1029/2007jd009028.Google Scholar
  37. Papayannis, A., Balis, D., Amiridis, V., Chourdakis, G., Tsaknakis, G., Zerefos, C., et al. (2005). Measurements of Saharan dust aerosols over the Eastern Mediterranean using elastic backscatter-Raman lidar, spectrophotometric and satellite observations in the frame of the EARLINET project. Atmospheric Chemistry and Physics, 5, 2065–2079.CrossRefGoogle Scholar
  38. Papayannis, A., Mamouri, R. E., Amiridis, V., Remoundaki, E., Tsaknakis, G., Kokkalis, P., et al. (2012). Optical-microphysical properties of Saharan dust aerosols and composition relationship using a multi-wavelength Raman lidar, in situ sensors and modelling: A case study analysis. Atmospheric Chemistry and Physics, 12(9), 4011–4032. doi:10.5194/acp-12-4011-2012.CrossRefGoogle Scholar
  39. Pappalardo, G., Wandinger, U., Mona, L., Hiebsch, A., Mattis, I., Amodeo, A., et al. (2010). EARLINET correlative measurements for CALIPSO: First intercomparison results. Journal of Geophysical Research-Atmospheres, 115(D00), H19. doi:10.1029/2009jd012147.Google Scholar
  40. Perez, L., Tobias, A., Querol, X., Kunzli, N., Pey, J., Alastuey, A., et al. (2008). Coarse particles from Saharan dust and daily mortality. Epidemiology, 19(6), 800–807. doi:10.1097/Ede.0b013e31818131cf.CrossRefGoogle Scholar
  41. Polymenakou, P. N., Mandalakis, M., Stephanou, E. G., & Tselepides, A. (2008). Particle size distribution of airborne microorganisms and pathogens during an intense African dust event in the eastern Mediterranean. Environmental Health Perspectives, 116(3), 292–296. doi:10.1289/Ehp.10684.CrossRefGoogle Scholar
  42. Querol, X., Alastuey, A., Rodriguez, S., Viana, M. M., Artinano, B., Salvador, P., et al. (2004). Levels of particulate matter in rural, urban and industrial sites in Spain. Science of the Total Environment, 334, 359–376. doi:10.1016/j.scitotenv.2004.04.036.CrossRefGoogle Scholar
  43. Querol, X., Pey, J., Pandolfi, M., Alastuey, A., Cusack, M., Perez, N., et al. (2009). African dust contributions to mean ambient PM(10) mass-levels across the Mediterranean Basin. Atmospheric Environment, 43(28), 4266–4277. doi:10.1016/j.atmosenv.2009.06.013.CrossRefGoogle Scholar
  44. Remoundaki, E., Bourliva, A., Kokkalis, P., Mamouri, R. E., Papayannis, A., Grigoratos, T., et al. (2011). PM(10) composition during an intense Saharan dust transport event over Athens (Greece). Science of the Total Environment, 409(20), 4361–4372. doi:10.1016/j.scitotenv.2011.06.026.CrossRefGoogle Scholar
  45. Rodriguez, S., Querol, X., Alastuey, A., Kallos, G., & Kakaliagou, O. (2001). Saharan dust contributions to PM10 and TSP levels in Southern and Eastern Spain. Atmospheric Environment, 35(14), 2433–2447. doi:10.1016/S1352-2310(00)00496-9.CrossRefGoogle Scholar
  46. Samoli, E., Kougea, E., Kassomenos, P., Analitis, A., & Katsouyanni, K. (2011). Does the presence of desert dust modify the effect of PM(10) on mortality in Athens, Greece? Science of the Total Environment, 409(11), 2049–2054. doi:10.1016/j.scitotenv.2011.02.031.CrossRefGoogle Scholar
  47. Sciare, J., Bardouki, H., Moulin, C., & Mihalopoulos, N. (2003). Aerosol sources and their contribution to the chemical composition of aerosols in the Eastern Mediterranean Sea during summertime. Atmospheric Chemistry and Physics, 3, 291–302.CrossRefGoogle Scholar
  48. Sillanpaa, M., Hillamo, R., Saarikoski, S., Frey, A., Pennanen, A., Makkonen, U., et al. (2006). Chemical composition and mass closure of particulate matter at six urban sites in Europe. Atmospheric Environment, 40, S212–S223. doi:10.1016/j.atmosenv.2006.01.063.CrossRefGoogle Scholar
  49. Terzi, E., Argyropoulos, G., Bougatioti, A., Mihalopoulos, N., Nikolaou, K., & Samara, C. (2010). Chemical composition and mass closure of ambient PM10 at urban sites. Atmospheric Environment, 44(18), 2231–2239. doi:10.1016/j.atmosenv.2010.02.019.CrossRefGoogle Scholar
  50. Theodosi, C., Grivas, G., Zarmpas, P., Chaloulakou, A., & Mihalopoulos, N. (2011). Mass and chemical composition of size-segregated aerosols (PM(1), PM(2.5), PM(10)) over Athens, Greece: Local versus regional sources. Atmospheric Chemistry and Physics, 11(22), 11895–11911. doi:10.5194/acp-11-11895-2011.CrossRefGoogle Scholar
  51. Vassilakos, C., Saraga, D., Maggos, T., Michopoulos, J., Pateraki, S., & Helmis, C. G. (2005). Temporal variations of PM2.5 in the ambient air of a suburban site in Athens, Greece. Science of the Total Environment, 349(1–3), 223–231. doi:10.1016/j.scitotenv.2005.01.012.CrossRefGoogle Scholar
  52. Viana, M., Maenhaut, W., Chi, X., Querol, X., & Alastuey, A. (2007). Comparative chemical mass closure of fine and coarse aerosols at two sites in south and west Europe: Implications for EU air pollution policies. Atmospheric Environment, 41(2), 315–326. doi:10.1016/j.atmosenv.2006.08.010.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • E. Remoundaki
    • 1
  • A. Papayannis
    • 2
  • P. Kassomenos
    • 3
  • E. Mantas
    • 1
  • P. Kokkalis
    • 2
  • M. Tsezos
    • 1
  1. 1.Laboratory of Environmental Science and Engineering, School of Mining and Metallurgical EngineeringNational Technical University of AthensZografouGreece
  2. 2.Laser Remote Sensing LaboratoryNational Technical University of AthensZografouGreece
  3. 3.Laboratory of Meteorology, Department of PhysicsUniversity of Ioannina, University CampusIoanninaGreece

Personalised recommendations