Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Chemical Leaching of Antimony and Other Metals from Small Arms Shooting Range Soil


Military small arms shooting range (SASR) soils are heavily polluted by metals like copper, lead, antimony, and zinc. This study was carried out to define efficient operating conditions to solubilize these metals by a chemical leaching technique. The comparison of different leaching reagents (HCl, H2SO4, CH3COOH, and EDTA) has revealed that sulfuric acid leaching coupled with the addition of sodium chloride is the most interesting option for the solubilization of Cu, Pb, Sb, and Zn from the finest fractions (<125 μm) of SASR soil. The initial metal contents of the soil sample were 1,760 mg Cu kg−1, 43,300 mg Pb kg−1, 780 mg Sb kg−1, and 355 mg Zn kg−1. The important operational parameters for leaching ([H2SO4], [NaCl], pulp density, reaction time, and temperature) were also studied. The optimum leaching conditions identified were 1 M H2SO4 and 4 M NaCl with a 10 % (w/v) soil pulp density at ambient temperature. In these conditions, 83, 75, 61, and 72 % of Cu, Pb, Sb, and Zn were respectively solubilized after only 1 h of treatment. The use of five successive leaching steps and two washing steps removed 96, 99, 84 and 86 % of Cu, Pb, Sb, and Zn respectively from the soil.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. APHA. (1999). Standards methods for examination of water and wastewaters. Washington, DC: American Public Health Association (APHA), American Water Works Association (AWWA) and Water Pollution Control Federation (WPCF).

  2. Astrup, T., Boddum, J. K., & Christensen, T. H. (1999). Lead distribution and mobility in a soil embankment used as a bullet stop at a shooting range. Journal of Soil Contamination, 8(6), 653–665.

  3. Bannon, D. I., Drezler, J. W., Fent, G. M., Casteel, S. W., Hunter, P. J., Brattin, W. J., & Major, M. A. (2009). Evaluation of small arms range soils for metal contamination and lead bioavailability. Environmental Science & Technology, 43(24), 9071–9076.

  4. Barbaroux, R., Meunier, N., Mercier, G., Taillard, V., Morel, J. L., Simonnot, M. O., & Blais, J. F. (2009). Chemical leaching of nickel from the seeds of the metal hyperaccumulator plant Alyssum murale. Hydrometallurgy, 100, 10–14.

  5. Bergeron, M. (2005). Method of decontaminating soil. US Patent No. US6915908B2.

  6. Blais, J. F., Djedidi, Z., Ben Cheikh, R., Tyagi, R. D., & Mercier, G. (2008). Metals precipitation from effluents—a review. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 12(3), 135–149.

  7. Blais, J. F., Meunier, N., & Mercier, G. (2010). Toxic metals removal from contaminated sites. Recent Patents on Engineering, 4(1), 1–6.

  8. Cao, X., & Dermatas, D. (2008). Evaluating the applicability of regulatory leaching tests for assessing lead leachability in contaminated shooting range soils. Environmental Monitoring and Assessment, 139, 1–13.

  9. Cao, X. D., Dermatas, D., Xu, X. F., & Shen, G. (2008). Immobilization of lead in shooting range soils by means of cement, quicklime, and phosphate amendments. Environmental Science and Pollution Research, 15(2), 120–127.

  10. Caoa, X., Ma, L. Q., Chen, M., Hardison, D. W., Jr., & Harrisa, W. G. (2003). Weathering of lead bullets and their environmental effects at outdoor shooting ranges. Journal of Environmental Quality, 32, 526–534.

  11. CCME. (2007). Recommandations canadiennes pour la qualité des sols: environnement et santé humaine. Winnipeg: Conseil Canadien des Ministres de l’Environnement.

  12. Chimenos, J. M., Fernandez, A. I., Cervantes, A., Miralles, L., Fernandez, M. A., & Espiell, F. (2005). Optimizing the APC residue washing process to minimize the release of chloride and heavy metals. Waste Management, 25(7), 686–693.

  13. Clausen, J., & Korte, N. (2009). The distribution of metals in soils and pore water at three U.S. military training facilities. Soil and Sediment Contamination, 18(5), 546–563.

  14. Conesa, H. M., Wieser, M., Gasser, M., Hockmann, K., Evangelou, M. W. H., Studer, B., & Schulin, R. (2010). Effects of three amendments on extractability and fractionation of Pb, Cu, Ni and Sb in two shooting range soils. Journal of Hazardous Materials, 181, 845–850.

  15. Darling, C. T. R., & Thomas, V. G. (2003). The distribution of outdoor shooting ranges in Ontario and the potential for lead pollution of soil and water. Science of the Total Environment, 313(1–3), 235–243.

  16. Dermatas, D., Cao, X., Tsaneva, V., Shen, G., & Grubb, D. G. (2006). Fate and behaviour of metal(loid) contaminants in an organic matter-rich shooting range soil: Implications for remediation. Water Air & Soil Pollution Focus, 6, 143–155.

  17. Dermont, G., Bergeron, M., Mercier, G., & Richer-Lafleche, M. (2008). Soil washing for metal removal: a review of physical/chemical technologies and field applications. Journal of Hazardous Materials, 152(1), 1–31.

  18. DiPalma, L., Ferrantelli, P., & Medici, F. (2005). Heavy metals extraction from contaminated soil: recovery of the flushing solution. Journal of Environmental Management, 77(3), 205–211.

  19. Djedidi, Z., Bouda, M., Souissi, M. A., Ben Cheikh, R., Mercier, G., Tyagi, R. D., & Blais, J. F. (2009). Metals removal from soil, fly ash and sewage sludge leachates by precipitation and dewatering properties of the generated sludge. Journal of Hazardous Materials, 172, 1372–1382.

  20. Djedidi, Z., Drogui, P., Ben Cheikh, R., Mercier, G., & Blais, J. F. (2005). Lead removal from soil using a saline leaching treatment and an electrolytic recovery process. Journal of Environmental Engineering, 131(2), 305–314.

  21. Drogui, P., Meunier, N., Mercier, G., & Blais, J. F. (2011). Removal of Pb and Zn ions from acidic soil leachate: a comparative study between electrocoagulation, adsorption, and chemical precipitation processes. International Journal of Environment and Waste Management, 8(3/4), 241–257.

  22. Filella, M., Belzile, N., & Chen, Y. W. (2002). Antimony in the environment: a review focused on natural waters II. Relevant solution chemistry. Earth-Science Review, 59, 265–285.

  23. Fuentes, E., Pinochet, H., De Gregori, I., & Potin-Gautier, M. (2003). Redox speciation analysis of antimony in soil extracts by hydride generation atomic fluorescence spectrometry. Spectrochimica Acta Part B, 58, 1279–1289.

  24. Gebel, T. (1997). Arsenic and antimony: comparative approach on mechanistic toxicology. Chemico-Biological Interactions, 107, 131–144.

  25. Janin, A., Blais, J. F., Mercier, G., & Drogui, P. (2009a). Optimization of a chemical leaching process for decontamination of CCA-treated wood. Journal of Hazardous Materials, 169, 136–145.

  26. Janin, A., Blais, J. F., Mercier, G., & Drogui, P. (2009b). Selective recovery of metals in leachate from chromated copper arsenate treated wood using ion exchange resins and chemical precipitation. Journal of Hazardous Materials, 169, 1099–1105.

  27. Johnson, C. A., Moench, H., Wersin, P., Kugler, P., & Wenger, C. (2005). Solubility of antimony and other elements in samples taken from shooting ranges. Journal of Environmental Quality, 34(1), 248–254.

  28. Laporte-Saumure, M., Martel, R., & Mercier, G. (2010). Evaluation of physic-chemical methods for treatment of Cu, Pb, Sb, and Zn in Canadian small arm firing ranges backstop soils. Water, Air, and Soil Pollution, 213(1–4), 171–189.

  29. Laporte-Saumure, M., Martel, R., & Mercier, G. (2011). Characterization and metal availability of copper, lead, antimony and zinc contamination at four Canadian small arm firing ranges. Environmental Technology, 32(7), 767–781.

  30. Levasseur, B., Chartier, M., Blais, J. F., & Mercier, G. (2006). Metals removal from municipal waste incinerator fly ashes and reuse of treated leachates. Journal of Environmental Engineering, 132(5), 497–505.

  31. Marino, M. A., Brica, R. M., & Neale, C. N. (1997). Heavy metal soil remediation; the effects of attrition scrubbing on a wet gravity concentration process. Environmental Progress, 16(3), 208–214.

  32. MDDEP. (1999). Politique de protection des sols et de réhabilitation des terrains contaminés (p. 132). Québec: Ministère du développement durable, de l’environnement et des parcs, Gouvernement du Québec.

  33. Mercier, G., Duchesne, J., & Blackburn, D. (2001). Prediction of metal removal efficiency from contaminated soils by physical methods. Journal of Environmental Engineering, 127(4), 348–358.

  34. Mercier, G., Duchesne, J., & Carles-Gibergues, A. (2002a). A simple and fast screening test to detect soils polluted by lead. Environmental Pollution, 118, 285–296.

  35. Mercier, G., Duchesne, J., & Blackburn, D. (2002b). Removal of metals from contaminated soils by mineral processing techniques followed by chemical leaching. Water, Air, and Soil Pollution, 135(1–4), 105–130.

  36. Meunier, N., Blais, J. F., & Tyagi, R. D. (2004). Removal of heavy metals from acid soil leachate using cocoa shells in a counter-current sorption process. Hydrometallurgy, 73(3/4), 225–235.

  37. Meunier, N., Drogui, P., Mercier, G., & Blais, J. F. (2009). Treatment of metal-loaded soil leachates by electrocoagulation. Separation and Purification Technology, 67(1), 110–116.

  38. Moral, R., Gilkes, R. J., & Moreno-Caselles, J. (2002). A comparison of extractants for heavy metals in contaminated soils from Spain. Communications in Soil Science and Plant Analysis, 33(15–18), 2781–2791.

  39. Mouton, J., Mercier, G., Drogui, P., & Blais, J. F. (2009). Experimental assessment of an innovative process for simultaneous PAHs and Pb removal from polluted soils. Science of the Total Environment, 407, 5402–5410.

  40. Nedwed, T., & Clifford, D. A. (2000). Feasibility of extracting lead from lead battery recycling site soil using high-concentration chloride solutions. Environmental Progress, 19, 197–206.

  41. Ortega, L. M., Lebrun, R., Blais, J. F., & Hausler, R. (2008). Removal of metal ions from an acidic leachate solution by nanofiltration membranes. Desalination, 227(1–3), 204–216.

  42. Reddy, K. R., & Chinthamreddy, S. (2000). Comparison of extractants for removing heavy metals from contaminated clayey soils. Soil and Sediment Contamination, 9(5), 449–462.

  43. Reid, S., & Cohen, S. Z. (2000). A new tool to predict lead mobility in shooting range soils: predicting SPLP results. In The 16th Annual International Conference on Contaminated Soils, Sediments and Water, Association for the Environmental Health and Sciences, USA, 16–19 October

  44. Rikers, R. A., Rem, P., Dalmijn, W. L., & Honders, A. (1998). Characterization of heavy metals in soil by high gradient magnetic separator. Journal of Soil Contamination, 7(2), 163–190.

  45. Scheinost, A. C., Rossberg, A., Vantelon, D., Xifra, I., Kretzschmar, R., Leuz, A. K., Funke, H., & Johnson, C. A. (2006). Quantitative antimony speciation in shooting-range soils by EXAFS spectroscopy. Geochimica et Cosmochimica Acta, 70, 3299–3312.

  46. Sorvari, J., Antikainen, R., & Pyy, O. (2006). Environmental contamination at Finnish shooting ranges—the scope of the problem and management options. Science of the Total Environment, 366(1), 21–31.

  47. Spuller, C., Weigand, H., & Marb, C. (2007). Trace metal stabilisation in a shooting range soil: mobility and phytotoxicity. Journal of Hazardous Materials, 141(2), 378–387.

  48. Takaoka, M., Fukutani, S., Yamamoto, T., Horiuchi, M., Satta, N., Takeda, N., Oshita, K., Yoneda, M., Morisawa, S., & Tanaka, T. (2005). Determination of chemical form of antimony in contaminated soil around a smelter using X-ray absorption fine structure. Analytical Science, 21, 769–773.

  49. USEPA. (2002a). Synthetic precipitation leaching procedure, method 1312. Available at:

  50. USEPA. (2002b). Toxicity characteristic leaching procedure, method 1311. Available at:

  51. USEPA. (2004). Treatment technologies for site clean-up: annual status report (p. 50). Cincinnati: United States Environmental Protection Agency. EPA-542-R-03-009.

  52. Van Benschoten, J. E., Matsumoto, M. R., & Young, W. H. (1997). Evaluation and analysis of soil washing for seven lead-contaminated soils. Journal of Environmental Engineering, 123(3), 217–224.

  53. Van Deuren, J., Lloyd, T., Chhetry, S., Liou, R., & Peck, J. (2002). Remediation technologies screening matrix and reference guide—version 4.0. U.S. Department of Defense, U.S. Army Environmental Center. Available at:

  54. Wills, B. A. (1988). Mineral processing technology. New York: Pergamon Press.

  55. Yu, Z., Feng, Q., Ou, L., Lu, Y., & Zhang, G. (2007). Selective leaching of a high-iron cobalt matte at atmospheric pressure. Separation and Purification Technology, 53, 1–7.

  56. Zakharov, M. K. (2005). Minimal extractant flow rate in countercurrent leaching. Theoretical Foundations of Chemical Engineering, 39(3), 325–328.

Download references


Sincere thanks are due to the Natural Sciences and Engineering Research Council of Canada, Canada Research Chairs for their financial help.

Author information

Correspondence to Jean-François Blais.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lafond, S., Blais, J., Martel, R. et al. Chemical Leaching of Antimony and Other Metals from Small Arms Shooting Range Soil. Water Air Soil Pollut 224, 1371 (2013).

Download citation


  • Shooting range
  • Soil
  • Antimony
  • Leaching
  • Lead
  • Acid