Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Cr(VI) Adsorption and Desorption on Soils and Biosorbents

  • 746 Accesses

  • 31 Citations

Abstract

We study the adsorption and desorption of chromium on two soils (a forest soil and a vineyard soil), both individually or after being combined with ground mussel shell, and on various materials (mussel shell, pyritic material from a dump site, and slate processing fines). The adsorption capacity depends mainly on the initial Cr concentration, on the pH, and on the abundance of noncrystalline Fe. The highest adsorption percentage (94 %) corresponds to the pyritic material, which also shows very low desorption rates (1.4 %), has the lowest pH, and has the highest concentration of noncrystalline Fe. The adsorption isotherms in most cases fit the Freundlich and Lineal models, rather than the Langmuir model, with no easily predictable maximum for chromium adsorption.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Abeynaike, A., Wang, L., Jones, M. I., & Patterson, D. A. (2011). Pyrolysed powdered mussel shells for eutrophication control: Effect of particle size and powder concentration on the mechanism and extent of phosphate removal. Asia-Pacific Journal of Chemical Engineering, 6, 231–243.

  2. Aksu, Z., & Akpinar, D. (2001). Competitive biosorption of phenol and chromium (VI) from binary mixtures onto dried anaerobic activated sludge. Biochemical Engineering Journal, 7, 183–193.

  3. Allison, J.D., Brown, D.S., & Novo-Gradac K.J. (1991). MINTEQA2/PRODEFA2: A geochemical assessment model for environmental systems (version 3.0). Athens: US EPA.

  4. Álvarez, E., Fernández-Sanjurjo, M. J., Núñez, A., Seco, N., & Corti, G. (2012). Aluminum fractionation and speciation in bulk and rhizosphere of a grass soil amended with mussel shells or lime. Geoderma, 173–174, 322–329.

  5. Arnesen, A. K. M., & Krogstad, T. (1998). Sorption and desorption of fluoride in soil polluted from the aluminium smelter at Ardal in Western Norway. Water, Air, and Soil Pollution, 103, 357–373.

  6. Blakemore, L. C. (1978). Exchange complex dominated by amorphous material (ECDAM). In G. D. Smith (Ed.), The andisol proposal (pp. 21–22). Lower Hutt: Soil Bureau.

  7. Boddu, V. M., Abburi, K., Talbott, J. L., & Smith, E. D. (2003). Removal of hexavalent chromium from wastewater using a new composite chitosan biosorbent. Environmental Science and Technology, 37, 4449–4456.

  8. Demiral, H., Demiral, I., Tümsek, F., & Karabacakoglu, B. (2008). Adsorption of chromium(VI) from aqueous solution by activated carbon derived from olive bagasse and applicability of different adsorption models. Chemical Engineering Journal, 144, 188–196.

  9. Dong, D., Zhao, X., Hua, X., Liu, J., & Gao, M. (2009). Investigation of the potential mobility of Pb, Cd and Cr(VI) from moderately contaminated farmland soil to groundwater in Northeast, China. Journal of Hazardous Materials, 162, 1261–1268.

  10. Faghihian, H., & Bowman, R. S. (2005). Adsorption of chromate by clinoptilolite exchanged with various metal cations. Water Research, 39, 1099–1104.

  11. Fernández-Calviño, D., Pérez-Novo, C., Bermudez-Couso, A., López-Periago, J. E., & Arias-Estévez, M. (2010). Batch and stirred flow reactor experiments on Zn sorption in acid soils, Cu competition. Geoderma, 159, 417–424.

  12. Gago, C., Romar, A., Fernández-Marcos, M. L., & Álvarez, E. (2012). Fluorine sorption by soils developed from various parent materials in Galicia (NW Spain). Journal of Colloid and Interface Science, 374, 232–236.

  13. Gode, F., & Pehlivan, E. (2005). Removal of Cr(VI) from aqueous solution by two Lewatit-anion exchange resins. Journal of Hazardous Materials, 119, 175–182.

  14. Guitián, F., & Carballas, T. (1976). Técnicas de análisis de suelos. Pico Sacro, Santiago de Compostela

  15. Guo, Y. P., Yang, S. F., Yu, K. F., Wang, Z. C., & Xu, H. D. (2002). Adsorption of Cr(VI) on micro- and mesoporous rice husk based-active carbon Mater. Chemical Physics, 78, 132–137.

  16. Gupta, V. K., Rastogi, A., & Nayak, A. (2010). Adsorption studies on the removal of hexavalent chromium from aqueous solution using a low cost fertilizer industry waste material. Journal of Colloid and Interface Science, 342(1), 135–141.

  17. Gupta, V. K., Ali, I., Saleh, T. A., Siddiqui, M. N., & Agarwal, S. (2012). Chromium removal from water by activated carbon developed from waste rubber tires. Environmental Science and Pollution Research. doi:10.1007/s11356-012-0950-9.

  18. Higuera-Cobos, O. F., Florez-García, L. C., & Arroyave-Londoño, J. F. (2009). Estudio de la biosorción de cromo con hoja de café. Ingeniería, Investigación y Tecnología, 29, 59–64.

  19. Kabata-Pendias, A., & Pendias, H. (2001). Trace elements in soils and plants. Boca Raton: CRC.

  20. Khezami, L., & Capart, R. (2005). Removal of chromium(VI) from aqueous solution by activated carbons: Kinetic and equilibrium studies. Journal of Hazardous Materials, 123, 223–231.

  21. Koby, M. (2009). Adsorption, kinetic and equilibrium studies of Cr(VI) by hazelnut shell activated carbon. Adsorption Science and Technology, 22, 51–64.

  22. Köhler, S., Cubillas, P., Rodríguez, J. D., Bauer, C., & Prieto, M. (2007). Removal of cadmium from wastewaters by aragonite shells and the influence of other divalent cations. Environmental Science and Technology, 41, 112–118.

  23. Lawrence, K., & Li, Y. (2006). Chemical reduction/oxidation. Handbook of Environmental Engineering., 4, 483–519.

  24. Lin, Y. T., & Huang, C. P. (2008). Reduction of chromium(VI) by pyrite in dilute aqueous solutions. Separation and Purification Technology, 63, 191–199.

  25. Mahvi, A. H., Nabizadeh, R., Gholami, F., & Khairi, A. (2007). Adsorption of chromium from wastewater by Platanus orientalis leaves. Iranian Journal of Environmental Health Science & Engineering, 4, 191–196.

  26. Miretzkya, P., & Fernandez Cirelli, A. (2010). Cr(VI) and Cr(III) removal from aqueous solution by raw and modified lignocellulosic materials: A review. Journal of Hazardous Materials, 180, 1–19.

  27. Monterroso, C., Fernández-Marcos, M. L., & Alvarez, E. (1996). Factors influencing phosphorus adsorption in mine soil in Galicia, Spain. The Science of the Total Environment, 180, 137–145.

  28. Mor, S., Ravindra, K., & Bishnoi, N. R. (2007). Adsorption of chromium from aqueous solution by activated alumina and activated charcoal. Bioresource Technology, 98, 954–957.

  29. Olsen, S.R., & Sommers, L. E. (1982). Phosphorus. In A.L. Page, R.H. Miller, & D.R. Keeney (Eds.), Methods of soil analysis, part 2. Chemical and microbiological properties (p. 403). Madison: Soil Science Society of America.

  30. Park, D., Lim, S. R., Yun, Y. S., & Park, J. M. (2007). Reliable evidences that the removal mechanism of hexavalent chromium by natural biomaterials is adsorption-coupled reduction. Chemosphere, 70, 298–305.

  31. Peech, L., Alexander, T., & Dean, L. A. (1947). Methods of soil analysis for soil fertility investigations. Washington: USDA.

  32. Pehlivan, E., Kahraman, H., & Pehlivan, E. (2011). Sorption equilibrium of Cr(VI) ions on oak wood charcoal (Carbo ligni) and charcoal ash as low-cost adsorbents. Fuel Processing Technology, 92, 65–70.

  33. Peña-Rodríguez, S., Fernández-Calviño, D., Nóvoa-Muñoz, J. C., Arias-Estévez, M., Núñez-Delgado, A., Fernández-Sanjurjo, M. J., et al. (2010). Kinetics of Hg(II) adsorption and desorption in calcined mussel shells. Journal of Hazardous Materials, 180, 622–627.

  34. Prakasham, R. S., Merrie, J. S., Sheela, R., Saswathi, N., & Ramakrisha, S. V. (1999). Biosorption of chromium(VI) by free and immobilized Rhizopus arrhizus. Environmental Pollution, 104, 421–427.

  35. Rawajfih, Z., & Nsour, N. (2008). Thermodynamic analysis of sorption isotherms of chromium (VI) anionic species on reed biomass. The Journal of Chemical Thermodynamics, 40, 846–851.

  36. Selvi, K., Pattabhi, S., & Kadirvelu, K. (2001). Removal of Cr(VI) from aqueous solution by adsorption onto activated carbon. Bioresource Technology, 80, 87–89.

  37. Sen, M., & Dastidar, M. G. (2010). Chromium removal using various biosorbents. Iranian Journal of Environmental Health Science & Engineering, 7, 182–190.

  38. Sudha-Bai, R., & Abraham, T. E. (2001). Biosorption of Cr (VI) from aqueous solution by Rhizopus nigrificans. Bioresource Technology, 79, 73–81.

  39. Ucun, H., Bayhan, Y. K., Kaya, Y., Cakici, A., & Algur, O. F. (2002). Biosorption of chromium (VI) form aqueous solution by cone biomass of Pinus sylvestris. Bioresource Technology, 85, 155–158.

  40. Vinodhini, V., & Nilanjana, D. (2009). Biowaste materials as sorbents to remove chromium (VI) from aqueous environment: A comparative study. Journal of Agriculture and Biological Sciences, 4, 19–23.

  41. Wang, X. S., Li, Z. Z., & Tao, S. R. (2009). Removal of chromium (VI) from aqueous solution using walnut hull. Journal of Environmental Management, 90, 721–729.

  42. Zouboulis, A. I., Kydros, K. A., & Matis, K. A. (1995). Removal of hexavalent chromium anions from solutions by pyrite fines. Water Research, 29, 1755–1760.

Download references

Acknowledgments

This research was supported by the Government of Galicia (Spain).

Author information

Correspondence to E. Álvarez.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fernández-Pazos, M.T., Garrido-Rodriguez, B., Nóvoa-Muñoz, J.C. et al. Cr(VI) Adsorption and Desorption on Soils and Biosorbents. Water Air Soil Pollut 224, 1366 (2013). https://doi.org/10.1007/s11270-012-1366-3

Download citation

Keywords

  • Chromium adsorption and desorption
  • Forest soil
  • Mussel shell
  • Pyritic materials
  • Slate processing fines
  • Vineyard soil