Water, Air, & Soil Pollution

, Volume 223, Issue 8, pp 4895–4904 | Cite as

Application of Electrochemical Degradation of Wastewater Composed of Mixtures of Phenol–Formaldehyde

  • Ana Luiza T. Fornazari
  • Geoffroy R. P. Malpass
  • Douglas W. Miwa
  • Artur J. MotheoEmail author


The industrial wastewater from resin production plants contains as major components phenol and formaldehyde, which are traditionally treated by biological methods. As a possible alternative method, electrochemical treatment was tested using solutions containing a mixture of phenol and formaldehyde simulating an industrial effluent. The anode used was a dimensionally stable anode (DSA®) of nominal composition Ti/Ru0.3Ti0.7O2, and the solution composition during the degradation process was analyzed by liquid chromatography and the removal of total organic carbon. From cyclic voltammetry, it is observed that for formaldehyde, a small offset of the beginning of the oxygen evolution reaction occurs, but for phenol, the reaction is inhibited and the current density decreases. From the electrochemical degradations, it was determined that 40 mA cm−2 is the most efficient current density and the comparison of different supporting electrolytes (Na2SO4, NaNO3, and NaCl) indicated a higher removal of total organic carbon in NaCl medium.


Electrochemical degradation Dimensionally stable anodes Phenol Formaldehyde Industrial wastewater 



The authors thank De Nora (Brazil) for DSA samples and the financial support from Brazilian National Council for Scientific and Technological Development (CNPq).


  1. Balasankar, T., & Nagarajan, S. (2000). Biodegradation of phenols by a plasmid free Bacillus brevis. Asian Journal of Microbiology, Biotechnology and Environmental Sciences, 2, 155–158.Google Scholar
  2. Beer, H.B. (1972). Electrode and coating therefor. US patent 3632498.Google Scholar
  3. Bolton, J. R., Bircher, K. G., Tumas, W., & Tolman, C. A. (2001). Figures-of-merit for the technical development and application of advanced oxidation technologies for both electric and solar-driven systems (IUPAC technical report). Pure and Applied Chemistry, 73, 627–637.CrossRefGoogle Scholar
  4. Chitra, S., Sekaran, G., Padmavathi, S., & Gowri, C. (1995). Removal phenolic compounds from wastewater using mutant strain of Pseudomonas pictorum. The Journal of General and Applied Microbiology, 41, 229–237.CrossRefGoogle Scholar
  5. Comninellis, C., & Nerine, A. (1995). Anodic oxidation of phenol in the presence of NaCl for wastewater treatment. Journal of Applied Electrochemistry, 25, 23–28.CrossRefGoogle Scholar
  6. Comninellis, C., & Pulgarin, C. (1991). Anodic oxidation of phenol for waste water treatment. Journal of Applied Electrochemistry, 21, 703–708.CrossRefGoogle Scholar
  7. De Angelis, D. F., Corso, C. R., Bidoia, E. D., Moraes, P. B., Domingos, R. N., & Rocha-Filho, R. C. (1998). Electrolysis of polluting wastes. I—wastewater from a seasoning freeze-drying industry. Química Nova, 21, 20–24.CrossRefGoogle Scholar
  8. Gattrell, M., & Kirk, D. W. (1993). A study of the oxidation of phenol at platinum and preoxidized platinum surfaces. Journal of the Electrochemical Society, 140, 1534–1540.CrossRefGoogle Scholar
  9. Grit, N., Riho, T., Liis, M., Maia, K., Frieder, S., & Hermann, J. H. (2004). Simultaneous degradation of atrazine and phenol by Pseudomonas sp. strain ADP: effects of toxicity and adaptation. Applied and Environmental Microbiology, 70, 1907–1912.CrossRefGoogle Scholar
  10. Malpass, G. R. P., & Motheo, A. J. (2001). Galvanostatic oxidation of formaldehyde–methanol solutions on Ti/Ru–0.Ti–3(0).O–7(2) electrodes using a filter-press cell. Journal of Applied Electrochemistry, 31, 1351–1357.CrossRefGoogle Scholar
  11. Malpass, G. R. P., & Motheo, A. J. (2003). The galvanostatic oxidation of aldehydes to acids on Ti/Ru0.3Ti0.7O2 electrodes using a filter-press cell. Journal of the Brazilian Chemical Society, 14, 65–70.CrossRefGoogle Scholar
  12. Malpass, G. R. P., & Motheo, A. J. (2008). Screening process for activity determination of conductive oxide electrodes for organic oxidation. Journal of the Brazilian Chemical Society, 19, 672–678.CrossRefGoogle Scholar
  13. Malpass, G. R. P., Miwa, D. W., Machado, S. A. S., Olivi, P., & Motheo, A. J. (2006a). Oxidation of the pesticide atrazine at DSA (R) electrodes. Journal of Hazardous Materials, 137, 565–572.CrossRefGoogle Scholar
  14. Malpass, G. R. P., Neves, R. S., & Motheo, A. J. (2006b). A comparative study of commercial and laboratory-made Ti/Ru0.3Ti0.7O2 DSA® electrodes: “in situ” and “ex situ” surface characterisation and organic oxidation activity. Electrochimica Acta, 52, 936–944.CrossRefGoogle Scholar
  15. Malpass, G. R. P., Miwa, D. W., Mortari, D. A., Machado, S. A. S., & Motheo, A. J. (2007a). Decolorisation of real textile waste using electrochemical techniques: effect of the chloride concentration. Water Research, 41, 2969–2977.CrossRefGoogle Scholar
  16. Malpass, G. R. P., Miwa, D. W., Machado, S. A. S., & Motheo, A. J. (2007b). Photo-assisted electrochemical oxidation of atrazine on a commercial Ti/Ru0.3Ti0.7O2 DSA electrode. Environmental Science and Technology, 41, 7120–7125.CrossRefGoogle Scholar
  17. Malpass, G. R. P., Miwa, D. W., Machado, S. A. S., & Motheo, A. J. (2008). Decolourisation of real textile waste using electrochemical techniques: effect of electrode composition. Journal of Hazardous Materials, 156, 170–177.CrossRefGoogle Scholar
  18. Martinez-Huitle, C. A., & Ferro, S. (2006). Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes. Chemical Society Reviews, 35, 1324–1340.CrossRefGoogle Scholar
  19. Murphy, P. A., Boegal, W. J., Price, M. K., & Moody, C. D. (1989). A Fenton like reaction to neutralize formaldehyde waste solutions. Environmental Science and Technology, 23, 166–173.CrossRefGoogle Scholar
  20. Pelegrino, R. L., Di Iglia, R. A., Sanches, C. G., Avaca, L. A., & Bertazzoli, R. (2002). Comparative study of commercial oxide electrodes performance in electrochemical degradation of organics in aqueous solutions. Journal of the Brazilian Chemical Society, 13, 60–65.CrossRefGoogle Scholar
  21. Rajeshwar, K., Ibanez, J.G., & Swain, G. M. (1994). Electrochemistry and the environment. Journal of Applied Electrochemistry, 24, 1077–1091.Google Scholar
  22. Rajkumar, D., & Palanivelu, K. (2004a). Electrochemical treatment of industrial wastewater. Journal of Hazardous Materials, B, 13, 123–129.CrossRefGoogle Scholar
  23. Rajkumar, D., & Palanivelu, K. (2004b). Electrochemistry and the environment. Journal of Applied Electrochemistry, 24, 1077–1091.Google Scholar
  24. Savall, A. (1995). Electrochemical treatment of industrial organic effluents. Chimia, 49, 23–27.Google Scholar
  25. Scialdone, O., Randazzo, S., Galia, A., & Silvestri, G. (2009). Electrochemical oxidation of organics in water: role of operative parameters in the absence and in the presence of NaCl. Water Research, 43, 2260–2272.CrossRefGoogle Scholar
  26. Stephen, T. L. T., Benjamin, Y. P. M., Abdul, M. M., & Joo, H. T. (2005). Comparing activated sludge and aerobic granules as microbial inocula for phenol biodegradation. Applied Microbiology and Biotechnology, 67, 708–713.CrossRefGoogle Scholar
  27. Tisler, R., & Zagorc-Koncan, J. (1997). Comparative assessment of toxicity of phenol, formaldehyde, and industrial wastewater to aquatic organism. Water, Air, and Soil Pollution, 97, 315–322.Google Scholar
  28. Trasatti, S. (2000). Electrocatalysis: understanding the success of DSA®. Electrochimica Acta, 45, 2377–2385.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Ana Luiza T. Fornazari
    • 1
  • Geoffroy R. P. Malpass
    • 2
  • Douglas W. Miwa
    • 1
  • Artur J. Motheo
    • 1
    Email author
  1. 1.Instituto de Química de São CarlosUniversidade de São PauloSão CarlosBrazil
  2. 2.Departamento de Engenharia Química, Instituto de Ciências Tecnológicas e ExatasUniversidade Federal do Triângulo MineiroUberabaBrazil

Personalised recommendations