Water, Air, & Soil Pollution

, Volume 223, Issue 7, pp 4355–4368 | Cite as

Removal of Pb2+ Ions from Water by Poly(Acrylamide-co-Sodium Methacrylate) Hydrogels

  • M. Kalagasidis Krušić
  • N. Milosavljević
  • A. Debeljković
  • Ö. B. Üzüm
  • E. Karadağ
Article

Abstract

The application of poly(acrylamide-co-sodium methacrylate) (AAm/SMA) hydrogel for the removal of Pb2+ ions from aqueous solutions has been investigated using batch adsorption technique. The extent of adsorption was investigated as a function of pH, adsorbent dose, and temperature. The Fourier transform infrared (FTIR) spectra showed that –NH2 and –COOH groups are involved in Pb2+ ion adsorption. The obtained results were analyzed by pseudo-first-order, pseudo-second–order, and intraparticle diffusion models using both linear and nonlinear methods. It was found that the Pb2+ ion adsorption followed pseudo-first-order kinetics. Nonlinear regression analysis of six isotherms, Langmuir, Freundlich, Redlich-Peterson, Toth, Dubinin-Radushkevich, and Sips, have been applied to the sorption data, while the best interpretation was given by Redlich-Peterson. Based on the separation factor, RL, the Pb2+ ion adsorption is favorable, while the negative values of ∆G indicates that the Pb2+ ion adsorption on the investigated hydrogel is spontaneous.

Keywords

Hydrogel Pb2+ adsorption Adsorption isotherm Kinetic model 

References

  1. Allen, S. J., Gan, Q., Matthews, R., Johnson, P. A., & Technol, B. (2003). Comparison of optimised isotherm models for basic dye adsorption by kudzu. Bioresource Technology, 88, 143–152.CrossRefGoogle Scholar
  2. Anirudhan, T. S., & Rijith, S. (2009). Glutaraldehyde cross-linked epoxyaminated chitosan as an adsorbent for the removal and recovery of cooper(II) from aqueous media. Colloid Surf A, 351, 52–59.CrossRefGoogle Scholar
  3. Arica, M. Y., Arpa, Ç., Ergene, A., Bayramoğlu, G., & Genç, Ö. (2003). Ca-alginate as a supper for Pb(II) and Zn(II) biosorption with immobilized Phanerochaete chrysosporium. Carbohydrate Polymers, 52, 167–174.CrossRefGoogle Scholar
  4. Carvalho, H. W. P., Batista, A. P. L., Hammer, P., Luz, G. H. P., & Ramalho, T. C. (2010). Removal of metal ions from aqueous solution by chelating polymeric hydrogel. Environmental Chemistry Letters, 8, 343–348.CrossRefGoogle Scholar
  5. Chantawong, V., Harvey, N. W., & Bashkin, V. N. (2003). Comparison of heavy metal adsorptions by Thai kaolin and ballclay. Water air soil pollution, 148, 111–125.CrossRefGoogle Scholar
  6. Chen, R., Zhi, C., Yang, H., Bando, Y., Zhang, Z., Sugiur, N., et al. (2011). Arsenic (V) adsorption on Fe3O4 nanoparticle-coated boron nitride nanotubes. Journal Colloid Interface Science, 359, 261–268.CrossRefGoogle Scholar
  7. Chu, K. H. (2002). Removal of copper from aqueous solution by chitosan in prawn shell: adsorption equilibrium and kinetics. Journal of Hazardous Materials, 90, 77–95.CrossRefGoogle Scholar
  8. Dabrowski, A., Hubicki, Z., Podkoscielny, P., & Robens, E. (2004). Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chemosphere, 56, 91–106.CrossRefGoogle Scholar
  9. Fu, F., Wang, Q., & Environ, J. (2011). Removal of heavy metal ions from wastewaters: a review. Manage, 92, 407–418.Google Scholar
  10. Gao, Y., Lee, K., Oshima, M., & Motomizu, S. (2000). Adsorption behavior of metal ions on cross-linked chitosan and the determination of oxoanions after pretreatment with a chitosan column. Analytical Sciences, 16, 1303–1308.CrossRefGoogle Scholar
  11. Genc, O., Soysal, L., Bayramoglu, G., Arica, M. Y., & Bektas, S. (2003). Procion Green H-4G immobilized poly(hydroxyethylmethacrylate/chitosan)composite membranes for heavy metal removal. Journal of Hazardous Materials, 97, 111–125.CrossRefGoogle Scholar
  12. Guan, W., Pan, J., Ou, H., Wang, X., Zou, X., Hu, W., et al. (2011). Removal of strontium (II) ions by potassium tetratitanate whisker and sodium trititanate whisker from aqueous solution: equilibrium, kinetics and thermodynamics. Chemical Engineering Journal, 167, 215–222.CrossRefGoogle Scholar
  13. Gurgel, L. V. A., & Frédéric, G. L. (2009). Adsorption of Cu(II), Cd(II) and Pb(II) from aqueous single metal solutions by succinylated twice-mercerized sugarcane bagasse functionalized with triethylenetetramine. Water Research, 43, 4479–4488.CrossRefGoogle Scholar
  14. Ho, Y. S., Porter, J. F., & Mckay, G. (2002). Equilibrium isotherm studies for the sorption of divalent metal ions onto peat: copper, nickel and lead single component systems. Water, Air Soil Pollution, 141, 1–33.CrossRefGoogle Scholar
  15. Huang, C. Y., Chung, C. H., & Liou, M. R. (1996). Adsorption of Cu(II) and Ni(II) by pelletized biopolymer. Journal of Hazardous Materials, 45, 265–277.CrossRefGoogle Scholar
  16. Jang, S. H., Jeong, Y. G., Min, B. G., Lyoo, W. S., & Lee, S. C. (2008). Preparation and lead ion removal property of hydroxyapatite/polyacrylamide composite hydrogels. Journal of Hazardous Materials, 159, 294–299.CrossRefGoogle Scholar
  17. Ju, X.-J. Zhang, S.-B., Zhou, M.-Y., Xie, R., Yang, L., & Chu, L.-Y. (2009). Novel heavy-metal adsorption material: ion-recognition P(NIPAM-co-BCAm) hydrogels for removal of lead(II) ions. Journal of Hazardous Materials, 167, 114–118.CrossRefGoogle Scholar
  18. Juang, R. S., Wu, F. C., & Tseng, R. L. (1999). Adsorption removal of copper(II) using chitosan from simulated rinse solutions containing chelating agents. Water Research, 33, 2403–2409.CrossRefGoogle Scholar
  19. Kabbashi, N. A., Atieh, M. A., Al-Mamun, A., Mirghami, M. E. S., Alam, M. D. Z., & Yahya, N. (2009). Kinetic adsorption of application of carbon nanotubes for Pb(II) removal from aqueous solution. Journal of Environmental Sciences, 21, 539–544.CrossRefGoogle Scholar
  20. Karadaǧ, E., Saraydin, D., Çetinkaya, S., & Güven, O. (1996). In vitro swelling studies and preliminary biocompatibility evaluation of acrylamide-based hydrogels. Biomaterials, 17(1), 67–70.CrossRefGoogle Scholar
  21. Koruga Dj, Tomić A., US patent pub. no.: 2009/0245603, System and method for analysis of light–matter interaction based on spectral convolution, Pub. Date: Oct. 1, 2009.Google Scholar
  22. Kumar, K. V. (2007). Optimum sorption isotherm by linear and non-linear methods for malachite green onto lemon peel. Dyes and Pigments, 74, 595–597.CrossRefGoogle Scholar
  23. Lee, M.-S., Ahn, J. G., & Ahn, J. W. (2003). Recovery of copper, tin and lead from the spent nitric etching solutions of printed circuit boards and regeneration of the etching solution. Hydrometallurgy, 70, 23–29.CrossRefGoogle Scholar
  24. Machida, M., Yamazaki, R., Aikawa, M., & Tatsumoto, H. (2005). Role of minerals in carbonaceous adsorbents for removal of Pb(II) ions from aqueous solution. Separation and Purification Technology, 46, 88–94.CrossRefGoogle Scholar
  25. Milosavljević, N., Ristić, M., Perić-Grujić, A., Filipović, J., Štrbać, S., Rakoćević, Z., et al. (2010). Hydrogel based on chitosan, itaconic acid and methacrylic acid as adsorbent of Cd2+ ions from aqueous solution. Chemical Engineering Journal, 165(2), 554–562.CrossRefGoogle Scholar
  26. Mohan, Y. M., Murthy, P. S. K., & Raju, K. M. (2005). Synthesis, characterization and effect of reaction parameters on swelling properties of acrylamide–sodium methacrylate superabsorbent copolymers. Reactive and Functional Polymers, 63, 11–26.CrossRefGoogle Scholar
  27. Murthy, P. S. K., Mohan, Y. M., Sreeramulu, J., & Raju, K. M. (2006). Semi-IPNs of starch and poly(acrylamide-co-sodium methacrylate): preparation, swelling and diffusion characteristics evaluation. Reactive and Functional Polymers, 66, 1482–1493.CrossRefGoogle Scholar
  28. Murugesan, A., Ravikumar, L., SelvaBala, V. S., Kumar, P. S., Vidhyadevi, T., Kirupha, S. D., et al. (2011). Removal of Pb(II), Cu(II) and Cd(II) ions from aqueous solution using polyazomethianeamides: equilibrium and kinetic approach. Desalination, 271, 199–208.CrossRefGoogle Scholar
  29. Naseem, R., & Tahir, S. S. (2001). Removal of Pb(II) from aqueous/acidic solutions by using bentonite as an adsorbent. Water Research, 33(11), 3982–3986.CrossRefGoogle Scholar
  30. Orozco-Guareño, E., Santiago-Gutiérrez, F., Morán-Quiroz, J. L., Hernandez-Olmos, S. L., Soto, V., de la Cruz, W., et al. (2010). Removal of Cu(II) ions from aqueous streams using poly(acrylic acid-co-acrylamide) hydrogels. Journal Colloid Interface Science, 349, 583–593.CrossRefGoogle Scholar
  31. Ramírez, E., Burillo, S. G., Barrera-Díaza, C., Roa, G., & Bilyeu, B. (2011). Use of pH-sensitive polymer hydrogels in lead removal from aqueous solution. Journal of Hazardous Materials, 192, 432–439.CrossRefGoogle Scholar
  32. Roy, P. K., Swami, V., Kumar, D., & Rajagopal, C. (2011). Removal of toxic metals using superabsorbent polyelectrolytic hydrogels. Journal of Applied Polymer Science, 122, 2415–2423.CrossRefGoogle Scholar
  33. Sastre, J., & Sahuquillo, A. (2002). Determination of Cd, Cu, Pb and Zn in environmental samples: microwave-assisted total digestion versus aqua regia and nitric acid extraction. Analytica Chimica Acta, 462, 59–72.CrossRefGoogle Scholar
  34. Septhum, C., Rattanaphani, S., Bremner, J. B., & Rattanaphani, V. (2007). An adsorption study of Al(III) ions onto chitosan. Journal of Hazardous Materials, 148, 185–191.CrossRefGoogle Scholar
  35. Stamenkovic, D., Kojic, D., Matija, L., Miljkovic, Z., & Babic, B. (2010). Physical properties of contact lenses characterized by scanning probe microscopy and optomagnetic fingerprint. International Journnal Modern Physics B, 24(6&7), 825–834.CrossRefGoogle Scholar
  36. Üzüm, Ö. B., & Karadağ, E. (2011). Dye sorption and water uptake properties of crosslinked acrylamide/sodium methacrylate copolymers and semi-interpenetrating polymer networks composed of PEG. Separation Science and Technology, 46(3), 489–499.CrossRefGoogle Scholar
  37. Wang, H. J., Zhou, A. L., Peng, F., Yu, H., & Yang, J. (2007). Mechanism study on adsorption of acidified multiwalled carbon nanotubes to Pb(II). Journal of Colloid and Interface Science, 316, 277–283.CrossRefGoogle Scholar
  38. Wang, X., Zheng, Y., & Wang, A. (2009). Fast removal of copper ions from aqueous solution by chitosan-g-poly(acrylic acid)/attapulgite composites. Journal of Hazardous Materials, 168, 970–977.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • M. Kalagasidis Krušić
    • 1
  • N. Milosavljević
    • 1
  • A. Debeljković
    • 2
  • Ö. B. Üzüm
    • 3
  • E. Karadağ
    • 3
  1. 1.Department of Organic Chemical TechnologyUniversity of Belgrade, Faculty of Technology and MetallurgyBelgradeSerbia
  2. 2.University of BelgradeFaculty of Mechanical Engineering, NanoLabBelgradeSerbia
  3. 3.Department of ChemistryAdnan Menderes University, Fen-Edebiyat FacultyAydınTurkey

Personalised recommendations