Water, Air, & Soil Pollution

, Volume 223, Issue 7, pp 4141–4152 | Cite as

Nitrate Reductase-Dependent Nitric Oxide Production Is Involved in Microcystin-LR-Induced Oxidative Stress in Brassica rapa

  • Jian Chen
  • You Ming Zhong
  • Hai Qiang Zhang
  • Zhi Qi Shi
Article

Abstract

Histochemical and biochemical approaches were used to investigate the phytotoxicity induced by microcystin-LR (MC-LR) in the shoots of Brassica rapa seedlings. MC-LR exposure was able to induce oxidative stress by triggering the over-generation of reactive oxygen species (ROS) including superoxide anion radical (O2 ) and hydrogen peroxide (H2O2) in the shoots of B. rapa. MC-LR exposure led to the significant increase in the concentration of endogenous nitric oxide (NO) in B. rapa. However, such increase was completely suppressed by the treatment with nitrate reductase (NR) inhibitor NaN3, while l-NMMA, a NO synthase (NOS) inhibitor, had only slight effect on the content of endogenous NO in MC-LR-treated plant. These data suggested that NR-dependent pathway was the main source for endogenous NO generation under MC-LR stress. Afterwards, treatment with NaN3 reduced the ROS generation, lipid peroxidation, and loss of membrane integrity in MC-LR-treated plant. MC-LR stress induced the increase in the expression of superoxide dismutase, ascorbate peroxidase, and catalase. However, such an effect could be reversed by the treatment with NaN3. These results indicate that NR-dependent NO production mediates MC-LR-induced oxidative stress by triggering the over-generation of ROS in B. rapa.

Keywords

Brassica rapa Microcystin-LR Nitrate reductase Nitric oxide Oxidative stress 

Notes

Acknowledgement

This research was supported by Jiangsu Agricultural Science Innovative Founds [CX(11)4065].

References

  1. Ali, M. B., Vajpayee, P., Tripathi, R. D., Rai, U. N., Kumar, A., et al. (2000). Mercury bioaccumulation induces oxidative stress and toxicity to submerged macrophyte Potamogeton crispus L. Bulletin of Environmental Contamination and Toxicology, 65, 573–582.CrossRefGoogle Scholar
  2. Apel, K., & Hirt, H. (2004). Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 55, 373–399.CrossRefGoogle Scholar
  3. Arasimowicz, M., & Floryszak-Wieczorek, J. (2007). Nitric oxide as a bioactive signaling molecule in plant stress responses. Plant Science, 172, 876–887.CrossRefGoogle Scholar
  4. Beers, R. F., Jr., & Sizer, I. W. (1952). A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. Journal of Biological Chemistry, 195, 133–140.Google Scholar
  5. Besson-Bard, A., Pugin, A., & Wendehenne, D. (2008). New insights into nitric oxide signaling in plants. Annual Review of Plant Biology, 59, 21–39.CrossRefGoogle Scholar
  6. Besson-Bard, A., Gravot, A., Richaud, P., Auroy, P., Duc, C., et al. (2009). Nitric oxide contributes to cadmium toxicity in Arabidopsis by promoting cadmium accumulation in roots and by up-regulating genes related to iron uptake. Plant Physiology, 149, 1302–1315.CrossRefGoogle Scholar
  7. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.CrossRefGoogle Scholar
  8. Bright, J., Desikan, R., Hancock, J. T., Weir, I. S., & Neill, S. J. (2006). ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis. The Plant Journal, 45, 113–122.CrossRefGoogle Scholar
  9. Chen, J., Song, L., Dai, J., Gan, N., & Liu, Z. (2004). Effects of microcystins on the growth and the activity of superoxide dismutase and peroxidase of rape (Brassica napus L.) and rice (Oryza sativa L.). Toxicon, 43, 393–400.CrossRefGoogle Scholar
  10. Chen, J., Shiyab, S., Han, F. X., Monts, D. L., Waggoner, C. A., et al. (2009). Bioaccumulation and physiological effects of mercury in Pteris vittata and Nephrolepis exaltata. Ecotoxicology, 18, 110–121.CrossRefGoogle Scholar
  11. Chen, J., Dai, J., Zhang, H., Wang, C., Zhou, G., et al. (2010). Bioaccumulation of microcystin and its oxidative stress in the apple (Malus pumila). Ecotoxicology, 19, 796–803.CrossRefGoogle Scholar
  12. Chen, J., Han, F. X., Wang, F., Zhang, H. Q., & Shi, Z. Q. (2012). Accumulation and phytotoxicity of microcystin-LR in rice (Oryza sativa). Ecotoxicology and Environmental Safety, 76, 193–199.CrossRefGoogle Scholar
  13. Corpas, F. J., Palma, J. M., Leterrier, M., del Río, L. A., & Barroso, J. B. (2009). Nitric oxide and abiotic stress in higher plants. In S. Hayat, M. Mori, J. Pichtel, & A. Ahmad (Eds.), Nitric oxide in plant physiology (pp. 51–63). Weinheim: Wiley-VCH GmbH & Co. KGaA.CrossRefGoogle Scholar
  14. Crush, J. R., Briggs, L. R., Sprosen, J. M., & Nichols, S. N. (2008). Effect of irrigation with lake water containing microcystins on microcystin content and growth of ryegrass, clover, rape, and lettuce. Environmental Toxicology, 23, 246–252.CrossRefGoogle Scholar
  15. de Pinto, M. C., Tomassi, F., & de Gara, L. (2002). Changes in the antioxidant systems as a part of the signaling pathway responsible for the programmed cell death activated by nitric oxide and reactive oxygen species in tobacco bright-yellow 2 cells. Plant Physiology, 130, 689–708.Google Scholar
  16. del Rio, L. A., Sandalio, L. M., Corpas, F. J., Palma, J. M., & Barroso, J. B. (2006). Reactive oxygen species and reactive nitrogen species in peroxisomes. Production, scavenging, and role in cell signaling. Plant Physiology, 141, 330–335.CrossRefGoogle Scholar
  17. Delledone, M. (2005). NO news is good news for plants. Current Opinion in Plant Biology, 38, 44–52.Google Scholar
  18. Duan, H., Ma, R., Xu, X., Kong, F., Zhang, S., et al. (2009). Two-decade reconstruction of algal blooms in China's Lake Taihu. Environmental Science & Technology, 43, 3522–3528.CrossRefGoogle Scholar
  19. Foreman, J., Demidchik, V., Bothwell, J. H., Mylona, P., Miedema, H., et al. (2003). Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature, 422, 442–446.CrossRefGoogle Scholar
  20. Frahry, G., & Schopfer, P. (2001). NADH-stimulated, cyanide-resistant superoxide production in maize coleoptiles analyzed with a tetrazolium-based assay. Planta, 212, 175–183.CrossRefGoogle Scholar
  21. Gas, E., Flores-Perez, U., Sauret-Gueto, S., & Rodriguez-Concepcion, M. (2009). Hunting for plant nitric oxide synthase provides new evidence of a central role for plastids in nitric oxide metabolism. The Plant Cell, 21, 18–23.CrossRefGoogle Scholar
  22. Giannopolitis, C. N., & Ries, S. K. (1977). Superoxide dismutases: I. Occurrence in higher plants. Plant Physiology, 59, 309–314.CrossRefGoogle Scholar
  23. Guo, L. (2007). Doing battle with the green monster of Taihu Lake. Science, 317, 1166.CrossRefGoogle Scholar
  24. Guo, K., Xia, K., & Yang, Z. M. (2008). Regulation of tomato lateral root development by carbon monoxide and involvement in auxin and nitric oxide. Journal of Experimental Botany, 59, 3443–3452.CrossRefGoogle Scholar
  25. Järvenpää, S., Lundberg-Niinistö, C., Spoof, L., Sjövall, O., Tyystjärvi, E., et al. (2007). Effects of microcystins on broccoli and mustard, and analysis of accumulated toxin by liquid chromatography-mass spectrometry. Toxicon, 49, 865–874.CrossRefGoogle Scholar
  26. Jiang, J., Gu, X., Song, R., Wang, X., & Yang, L. (2011). Microcystin-LR induced oxidative stress and ultrastructural alterations in mesophyll cells of submerged macrophyte Vallisneria natans (Lour.) Hara. Journal of Hazardous Materials, 190, 188–196.CrossRefGoogle Scholar
  27. Lamotte, O., Gould, K., Lecourieux, D., Sequeira-Legrand, A., Lebrun-Garcia, A., et al. (2004). Analysis of nitric oxide signaling functions in tobacco cells challenged by the elicitor cryptogein. Plant Physiology, 135, 516–529.CrossRefGoogle Scholar
  28. Leigh, C., Burford, M. A., Roberts, D. T., & Udy, J. W. (2010). Predicting the vulnerability of reservoirs to poor water quality and cyanobacterial blooms. Water Research, 44, 4487–4496.CrossRefGoogle Scholar
  29. Martin, M., Colman, M. J. R., Gόez-Casati, D. F., Lamattina, L., & Zabaleta, E. J. (2009). Nitric oxide accumulation is required to protect against iron-mediated oxidative stress in frataxin-deficient Arabidopsis plants. FEBS Letters, 583, 542–548.CrossRefGoogle Scholar
  30. Máthé, C., Beyer, D., Erdődi, F., Serfőző, Z., Székvölgyi, L., et al. (2009). Microcystin-LR induces abnormal root development by altering microtubule organization in tissue-cultured common reed (Phragmites australis) plantlets. Aquatic Toxicology, 92, 122–130.CrossRefGoogle Scholar
  31. M-Hamvas, M., Mathe, C., Molnar, E., Vasas, G., Grigorszky, I., et al. (2003). Microcystin-LR alters the growth, anthocyanin content and single-stranded DNase enzyme activities in Sinapis alba L seedlings. Aquatic Toxicology, 62, 1–9.CrossRefGoogle Scholar
  32. M-Hamvas, M., Máthé, C., Vasas, G., Jámbrik, K., Papp, M., et al. (2011). Cylindrospermopsin and microcystin-LR alter the growth, development and peroxidase enzyme activity of white mustard (Sinapis alba L.) seedlings, a comparative analysis. Acta Biologica Hungarica, 61, 35–48.CrossRefGoogle Scholar
  33. Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7, 405–410.CrossRefGoogle Scholar
  34. Mittler, R., & Zilinskas, B. A. (1993). Detection of ascorbate peroxidase activity in native gels by inhibition of the ascorbate-dependent reduction of nitroblue tetrazolium. Analytical Biochemistry, 212, 540–546.CrossRefGoogle Scholar
  35. Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant & Cell Physiology, 22, 867–880.Google Scholar
  36. Neill, S., Bright, J., Desikan, R., Hancock, J., Harrison, J., et al. (2008). Nitric oxide evolution and perception. Journal of Experimental Botany, 59, 25–35.CrossRefGoogle Scholar
  37. Ono, E., Wong, H. L., Kawasaki, T., Hasegawa, M., Kodama, O., & Shimamoto, K. (2001). Essential role of the small GTPase Rac in disease resistance of rice. Proceedings of the National Academy of Sciences of the United States of America, 98, 759–764.Google Scholar
  38. Orozco-Cardenas, M., & Ryan, C. A. (1999). Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid pathway. Proceedings of the National Academy of Sciences of the United States of America, 96, 6553–6557.CrossRefGoogle Scholar
  39. Paerl, H. W., Hall, N. S., & Calandrino, E. S. (2011). Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change. Science of the Total Environment, 409, 1739–1745.CrossRefGoogle Scholar
  40. Pereira, S., Saker, M., Vale, M., & Vasconcelos, V. (2009). Comparison of sensitivity of grasses (Lolium perenne L. and Festuca rubra L.) and lettuce (Lactuca sativa L.) exposed to water contaminated with microcystins. Bulletin of Environmental Contamination and Toxicology, 83, 81–84.CrossRefGoogle Scholar
  41. Peuthert, A., & Pflugmacher, S. (2010). Influence of the cyanotoxin microcystin-LR on tocopherol in Alfalfa seedlings (Medicago sativa). Toxicon, 56, 411–417.CrossRefGoogle Scholar
  42. Peuthert, A., Chakrabarti, S., & Pflugmacher, S. (2007). Uptake of microcystins-LR and -LF (cyanobacterial toxins) in seedlings of several important agricultural plant species and the correlation with cellular damage (lipid peroxidation). Environmental Toxicology, 22, 436–442.CrossRefGoogle Scholar
  43. Pflugmacher, S. (2004). Promotion of oxidative stress in the aquatic macrophyte Ceratophyllum demersum during biotransformation of the cyanobacterial toxin microcystin-LR. Aquatic Toxicology, 70, 169–178.CrossRefGoogle Scholar
  44. Pflugmacher, S., Jung, K., Lundvall, L., Neumann, S., & Peuthert, A. (2006). Effects of cyanobacterial toxins and cyanobacterial cell-free crude extract on germination of alfalfa (Medicago sativa) and induction of oxidative stress. Environmental Toxicology and Chemistry, 25, 2381–2387.CrossRefGoogle Scholar
  45. Pflugmacher, S., Aulhorn, M., & Grimm, B. (2007). Influence of a cyanobacterial crude extract containing microcystin-LR on the physiology and antioxidative defence systems of different spinach variants. New Phytologist, 175, 482–489.CrossRefGoogle Scholar
  46. Pflugmacher, S., Hofmann, J., & Hubner, B. (2007). Effects on growth and physiological parameters in wheat (Triticum aestivum L.) grown in soil and irrigated with cyanobacterial toxin contaminated water. Environmental Toxicology and Chemistry, 26, 2710–2716.CrossRefGoogle Scholar
  47. Prieto, A., Campos, A., Cameán, A., & Vasconcelos, V. (2011). Effects on growth and oxidative stress status of rice plants (Oryza sativa) exposed to two extracts of toxin-producing cyanobacteria (Aphanizomenon ovalisporum and Microcystis aeruginosa). Ecotoxicology and Environmental Safety, 74, 1973–1980.CrossRefGoogle Scholar
  48. Rio, L. A., Puppo, A., Bolwell, G. P., & Daudi, A. (2009). Reactive oxygen species in plant–pathogen interactions. In L. A. Rio & A. Puppo (Eds.), Reactive oxygen species in plant signaling, signaling and communication in plants (pp. 113–133). Berlin: Springer.CrossRefGoogle Scholar
  49. Saqrane, S., Ghazali, I. E., Ouahid, Y., Hassni, M. E., Hadrami, I. E., et al. (2007). Phytotoxic effects of cyanobacteria extract on the aquatic plant Lemna gibba: Microcystin accumulation, detoxication and oxidative stress induction. Aquatic Toxicology, 83, 284–294.CrossRefGoogle Scholar
  50. Torres, M. A., Dangl, J. L., & Jones, J. D. (2002). Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proceedings of the National Academy of Sciences of the United States of America, 99, 517–522.CrossRefGoogle Scholar
  51. Wang, Y. S., & Yang, Z. M. (2005). Nitric oxide reduces aluminum toxicity by preventing oxidative stress in the roots of Cassia tora L. Plant & Cell Physiology, 46, 1915–1923.CrossRefGoogle Scholar
  52. Wang, Z., Xiao, B., Song, L., Wu, X., Zhang, J., et al. (2011). Effects of microcystin-LR, linear alkylbenzene sulfonate and their mixture on lettuce (Lactuca sativa L.) seeds and seedlings. Ecotoxicology, 20, 803–814.CrossRefGoogle Scholar
  53. Welker, M., & von Döhren, H. (2006). Cyanobacterial peptides—Nature's own combinatorial biosynthesis. FEMS Microbiology Reviews, 30, 530–563.CrossRefGoogle Scholar
  54. Woodbury, W., Spencer, A. K., & Stahmann, M. A. (1971). An improved procedure using ferricyanide for detecting catalase isoenzymes. Analytical Biochemistry, 44, 301–305.CrossRefGoogle Scholar
  55. Xie, S., Pancost, R. D., Wang, Y., Yang, H., Wignall, P. B., et al. (2010). Cyanobacterial blooms tied to volcanism during the 5 m.y. Permo-Triassic biotic crisis. Geology, 38, 447–450.CrossRefGoogle Scholar
  56. Yamamoto, Y., Kobayashi, Y., & Matsumoto, H. (2001). Lipid peroxidation is an early symptom triggered by aluminum, but not the primary cause of elongation inhibition in pea roots. Plant Physiology, 125, 199–208.CrossRefGoogle Scholar
  57. Zhang, A., Zhang, J., Zhang, J., Ye, N., Zhang, H., et al. (2010). Nitric oxide mediates brassinosteroid-induced ABA biosynthesis involved in oxidative stress tolerance in maize leaves. Plant & Cell Physiology, 52, 181–192.CrossRefGoogle Scholar
  58. Zhao, M. G., Chen, L., Zhang, L. L., & Zhang, W. H. (2009). Nitric reductase-dependent NO production is involved in cold acclimation and freezing tolerance in Arabidopsis. Plant Physiology, 151, 755–767.CrossRefGoogle Scholar
  59. Zhou, Z. S., Wang, S. J., & Yang, Z. M. (2008). Biological detection and analysis of mercury toxicity to alfalfa (Medicago sativa) plants. Chemosphere, 70, 1500–1509.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Jian Chen
    • 1
    • 2
    • 3
  • You Ming Zhong
    • 1
    • 2
    • 3
  • Hai Qiang Zhang
    • 1
    • 2
    • 3
    • 4
  • Zhi Qi Shi
    • 1
    • 2
    • 3
  1. 1.Institute of Food Quality and SafetyJiangsu Academy of Agricultural SciencesNanjingChina
  2. 2.Key Laboratory of Food Safety Monitoring and Management of Ministry of AgricultureNanjingChina
  3. 3.Key Laboratory of Food Quality and Safety of Jiangsu Province (State Key Laboratory Breeding Base)NanjingChina
  4. 4.College of Life SciencesNanjing Agricultural UniversityNanjingChina

Personalised recommendations