Water, Air, & Soil Pollution

, Volume 223, Issue 7, pp 4007–4016 | Cite as

Toxicological Effects of Three Polybromodiphenyl Ethers (BDE-47, BDE-99 and BDE-154) on Growth of Marine Algae Isochrysis galbana

  • L. Mhadhbi
  • J. Fumega
  • R. Beiras


Polybrominated diphenyl ethers (PBDEs) are highly persistent anthropogenic contaminants found in trace amounts in many environmental compartments far from their source areas, posing a risk to aquatic ecosystems. Our objective was to determine the relative toxicities of three BDEs, BDE-47, BDE-99 and BDE-154 on marine phytoplankton algae Isochrysis galbana. For a highly sensitive endpoint: the 72-h inhibition of autotrophic growth rate was calculated according to standards methods. Actual PBDE concentration was measured by GC-MS and toxicity parameters were calculated on the basis of time-weighted mean actual concentrations. No observable effect concentration (NOEC) values were 2.53 μg L−1 for BDE-47, 3.48 μg L−1 for BDE-99 and 12.3 μg L−1 for BDE-154, and LOEC values were 5.06, 6.96 and 24.60 μg L−1 for BDE-47, BDE-99 and BDE-154, respectively. The calculated IC10 (the concentration inhibiting growth rate by 10 %) corresponded to 9.3, 12.78 and 54.6 μg L−1 for BDE-47, BDE-99 and BDE-154, respectively. The 50 % inhibitions of growth rate (IC50) values were: 25.7 μg L−1 BDE-47, 30.0 μg L−1 BDE-99 and 243.7 μg L−1 BDE-154. Therefore, the acute toxicity of PBDEs decreases as the degree of bromination increases, the order of toxicity is BDE-47 > BDE-99 > BDE-154. Significant (p < 0.05) adverse effects were observed for all compounds at concentrations >15 μg L−1. Our results indicated that under laboratory conditions PBDEs inhibited the growth of marine phytoplankton at concentrations near 10 μg L−1. However, further work is required to investigate long-term effects in these and other aquatic organisms.


PBDEs Toxicity Isochrysis galbana Bioassay Growth rate inhibition 



The authors gratefully acknowledge the cooperation of all the workers and personnel at the ECIMAT and Laboratory of Marine ecology. We would like to express our warmest thanks to Ms. Alexandra Barciela Pereira and Ms. Nuria Trigo Sampedro for their technical assistance. We extend our thanks to Sara Pérez and Diego Rial. This study was financially supported by MAE-PCI (Ministry of Foreign Affairs, Spain), Ministry of Higher Education, Scientific Research and Technology in Tunisia and Spanish Ministry of Science and Innovation (MCINN) through the research project ref. CTM2009-10908 Environmental Quality Criteria for Marine Ecosystems (ENVICRISYS).


  1. Booij, K., Zegers, B. N., & Boon, J. P. (2002). Levels of some polybrominated diphenyl ether (PBDE) flame retardants along the Dutch coast as derived from their accumulation in SPMDs and blue mussels (Mytilus edulis). Chemosphere, 46, 683–688.CrossRefGoogle Scholar
  2. Breitholtz, M., & Wollenberger, L. (2003). Effects of three PBDEs on development, reproduction, and population growth rate of the harpacticoid copepod Nitocra spinipes. Aquatic Toxicology, 64, 85–96.CrossRefGoogle Scholar
  3. Cheung, K. C., Zheng, J. S., Leung, H. M., & Wong, M. H. (2008). Exposure to polybrominated diphenyl ethers associated with consumption of marine and freshwater fish in Hong Kong. Chemosphere, 70, 1707–1720.CrossRefGoogle Scholar
  4. Chou, C. T., Hsiao, Y. C., Ko, F. C., Cheng, J. O., Cheng, Y. M., & Chen, T. H. (2010). Chronic exposure of 2,2 ',4,4 '-tetrabromodiphenyl ether (PBDE-47) alters locomotion behavior in juvenile zebrafish (Danio rerio). Aquatic Toxicology, 98, 388–395.CrossRefGoogle Scholar
  5. Christensen, E. R., & Zielski, P. A. (1980). Toxicity of arsenic and PCB to a Green alga (Chlamydomonas). Bulletin of Environmental Contamination and Toxicology, 25(1), 43–48.CrossRefGoogle Scholar
  6. De Boer, J., Wester, P. G., Klamer, H. J. C., Lewis, W. E., & Boon, J. P. (1998). Do flame retardants threaten ocean life? Nature, 394, 28–29.CrossRefGoogle Scholar
  7. De la Torre, A., Alonso, E., Concejero, M. A., Sanz, P., & Martínez, M. A. (2011). Sources and behaviour of polybrominated diphenyl ethers (PBDEs), polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in Spanish sewage sludge. Waste Management, 31, 1277–1284.CrossRefGoogle Scholar
  8. De Wit, C. Y. (2002). An overview of brominated flame retardants in the environment. Chemosphere, 46, 583–624.CrossRefGoogle Scholar
  9. Debelius, B., Forja, J. M., Del Valls, A., & Lubián, L. M. (2008). Effect of linear alkylbenzene sulfonate (LAS) and atrazine on marine microalgae. Marine Pollution Bulletin, 57, 559–568.CrossRefGoogle Scholar
  10. Domingo, J. L., Bocio, A., Falcó, G., & Llobet, J. M. (2006). Exposure to PBDEs and PCDEs associated with the consumption of edible marine species. Environmental Science & Technology, 40, 4394–4399.CrossRefGoogle Scholar
  11. Eguchi, K., Nagase, H., Ozawa, M., Endoh, Y. S., Goto, K., Hirata, K., Miyamoto, K., & Yoshimura, H. (2004). Evaluation of antimicrobial agents for veterinary use in the ecotoxicity test using microalgae. Chemosphere, 57, 1733–1738.CrossRefGoogle Scholar
  12. Eljarrat, E., de la Cal, A., Raldua, D., Duran, C., & Barceló, D. (2004). Occurrence and bioavailability of polybrominated diphenyl ethers and hexabromocyclododecane in sediment and fish from the Cinca River, a tributary of the Ebro River (Spain). Environmental Science & Technology, 38, 2603–2608.CrossRefGoogle Scholar
  13. U. S. EPA (1980). Ambient water quality criteria for polychlorinated biphenyls, EPA. 440/5-80-068.Google Scholar
  14. European Comission. (2002). EUR 20402 EN-European Union risk assessment report on bis(pentabromophenyl) ether. Luxembourg: Office for Official Publications of the European Communities.Google Scholar
  15. European Comission. EU (2003). Directive 2003/11/EC of the European Parliament and of the Council of 2 February 2003 amending the 24th time Council Directive 76/769/EEC relating to restrictions on the marketing and use of certain dangerous substances and preparations (pentabromodiphenyl ether, octabromodiphenyl ether). Official Journal of the European Union. 15.2.2003.Google Scholar
  16. European Comission. EU. draft RAR (2000). EU Risk assessment reports for bis (pentabromophenyl) ether (decabromodiphenyl ether) CAS 1163-19-5, EC Chemical Number R013, RAR draft number as stated. Accessed 17 Jan 2012.
  17. Evandri, M. G., Costa, L. G., & Bolle, P. (2003). Evaluation of brominated diphenyl ether-99 toxicity with Raphidocelis subcapitata and Daphnia magna. Environmental Toxicology and Chemistry, 22(9), 2167–2172.CrossRefGoogle Scholar
  18. Fangstrom, B., Hovander, L., Bignert, A., Athanassiadis, I., Linderholm, L., Grandjean, P., Weihe, P., & Bergman, A. (2005). Concentrations of polybrominated diphenyl ethers, polychlorinated biphenyls and polychlorobiphenylols in serum from pregnant Faroese women and their children 7 years later. Environmental Science & Technology, 39, 9457–9463.CrossRefGoogle Scholar
  19. Gevao, B., Ghadban, A. N., Uddin, S., Jaward, F. M., Bahloul, M., & Zafar, J. (2011). Polybrominated diphenyl ethers (PBDEs) in soils along a rural–urban-rural transect: sources, concentration gradients, and profiles. Environmental Pollution, 159, 3666–3672.CrossRefGoogle Scholar
  20. Helleday, T., Tuominen, K. L., Bergman, A., & Jenssen, D. (1999). Brominated flame retardants induce intragenic recombination in mammalian cells. Mutation Research, 439, 137–147.CrossRefGoogle Scholar
  21. Hing, S. L., Law, A. T., Shazili, N. A. M., & Abdul-Rashid, M. K. (2000). Effects of phenanthrene on Isochrysis galbana. In M. Shariff, F. M. Yusoff, N. Gopinanth, N. H. M. Ibrahim, & R. A. Mustapha (Eds.), Towards sustainable management of the Straits of Malacca (pp. 529–536). Serdang, Malaysia: Malacca Straits Research and Development Centre (MASDEC). Universiti Putra Malaysis.Google Scholar
  22. Hornung, M. W., Zabel, E. W., & Peterson, R. E. (1996). Toxic equivalency factors of polybrominated dibenzo-ρ-dioxin, dibenzofuran, biphenyl, and polyhalogenated diphenyl ether congeners based on rainbow trout early life stage mortality. Toxicology and Applied Pharmacology, 140, 227–234.CrossRefGoogle Scholar
  23. Iseki, K., Takahashi, M., Bauerfeind, E., & Wongl, C. S. (1981). Effects of polychlorinated biphenyls (PCBs) on a marine plankton population and sedimentation in controlled ecosystem enclosures. Marine Ecology Progress Series, 5, 207–214.CrossRefGoogle Scholar
  24. Källqvist, T., Grung, M., & Tollefsen, K. (2006). Chronic toxicity of 2,4,2′,4′-tetrabromodiphenyl ether on the marine alga Skeooletonema costatum and the crustacean Daphnia magna. Environmental Toxicology and Chemistry, 25(6), 1657–1662.CrossRefGoogle Scholar
  25. La Guardia, M. J., Hale, R. C., & Harvey, E. (2006). Detailed polybrominated diphenyl ether (PBDE) congener composition of the widely used penta-, octa-, and deca-PBDE technical flame-retardant mixtures. Environmental Science & Technology, 40, 6247–6254.CrossRefGoogle Scholar
  26. Lacorte, S., & Ikonomou, M. G. (2009). Occurrence and congener specific profiles of polybrominated diphenyl ethers and their hydroxylated and methoxylated derivatives in breast milk from Catalonia. Chemosphere, 74(3), 412–420.CrossRefGoogle Scholar
  27. Law, R. J., Allchin, C. R., de Boer, J., Covaci, A., Herzke, D., Lepom, P., Morris, S., Tronczynski, J., & de Wit, C. A. (2006). Levels and trends of brominated flame retardants in the European environment. Chemosphere, 64, 187–208.CrossRefGoogle Scholar
  28. Lema, S. C., Schultz, I., Scholz, N., Incardona, J., & Swanson, P. (2007). Neural defects and cardiac arrhythmia in fish larvae following embryonic exposure to 2,2′,4,4′-tetrabromodiphenyl ether (PBDE-47). Aquatic Toxicology, 82, 296–307.CrossRefGoogle Scholar
  29. Ma, J., Lu, N., Qin, W., Xu, R., Wang, Y., & Chen, X. (2006). Differential responses of eight cyanobacterial and green algal species, to carbamate insecticides. Ecotoxicology and Environmental Safety, 63, 268–274.CrossRefGoogle Scholar
  30. Mhadhbi, L., Fumega, J., Boumaiza, M., & Beiras, R. (2011). Acute toxicity of polybrominated diphenyl ethers (PBDEs) for turbot (Psetta maxima) early life stages (ELS). Environmental Science and Pollution Research. doi: 10.1007/s11356-011-0602-5.
  31. Moore, R. J., & Caux, P. (1997). Estimating low toxic effects. Environmental Toxicology and Chemistry, 16, 794–801.CrossRefGoogle Scholar
  32. Moss, S., Keller, J. M., Richards, S., & Wilson, T. P. (1997). Concentrations of persistent organic pollutants in plasma from two species of turtle from the Tennessee River Gorge. Chemosphere, 76, 194–204.CrossRefGoogle Scholar
  33. Noyes, P. D., Kelly, S. M., Mitchelmore, C. L., & Stapleton, H. M. (2010). Characterizing the in vitro hepatic biotransformation of the flame retardant BDE 99 by common carp. Aquatic Toxicology, 97, 142–150.CrossRefGoogle Scholar
  34. Noyes, P. D., Hinton, D. E., & Stapleton, H. M. (2011). Accumulation and debromination of decabromodiphenyl ether (BDE-209) in juvenile fathead minnows (Pimephales promelas) induces thyroid disruption and liver alterations. Toxicological Science. doi: 10.1093/toxsci/kfr105.
  35. OECD (2006). Guidelines for the testing of chemicals No 201. Freshwater alga and cyanobacteria, growth inhibition test. http://browse.oecd/pdfs/browseit/9720101E.PDF.
  36. Pérez, P., Fernández, E., & Beiras, R. (2009). Toxicity of benzalkonium chloride on monoalgal cultures and natural assemblages of marine phytoplankton. Water, Air, and Soil Pollution, 201, 319–330.CrossRefGoogle Scholar
  37. Renaud, S. M., Parry, D. L., Thinh, L. V., Kuo, C., Padovan, A., & Sammy, N. (1991). Effect of light intensity on the proximate biochemical and fatty acid composition of Isochrysis sp. and Nannochloropsis oculata for use in tropical aquaculture. Journal of Applied Physiology, 3, 43–53.Google Scholar
  38. Riquelme, C. E., & Avendaño-Herrera, R. E. (2003). Microalgae and bacteria interaction in the aquatic environment and their potential use in aquaculture. Revista Chilena de Historia Natural, 76, 725–736.CrossRefGoogle Scholar
  39. Roberts, S. C., Noyes, P. D., Gallagher, E. P., & Stapleton, H. M. (2011). Species specific differences and structure–activity relationships in the debromination of PBDE congeners in three fish species. Environmental Science & Technology, 45, 1999–2005.CrossRefGoogle Scholar
  40. Shaw, I. C., & Chadwick, J. (1998). Principles of environmental toxicology (pp. 47–65). London: Taylor and Francis.Google Scholar
  41. Sinclair, J., Garland, S., Arnason, T., Hope, P., & Granville, M. (1977). Polychlorinated biphenyls and their effects on photosynthesis and respiration. Canadian Journal of Botany, 55, 2679–2684.CrossRefGoogle Scholar
  42. Stapleton, H. M., Kelly, S. M., Pei, R., Letcher, R. J., & Gunsch, C. (2009). Metabolism of polybrominated diphenyl ethers (PBDEs) by human hepatocytes in vitro. Environmental Health Perspectives, 117, 197–202.CrossRefGoogle Scholar
  43. Suyama, T. L., Cao, Z., Murray, T. F., & Gerwick, W. H. (2010). Ichthyotoxic brominated diphenyl ethers from a mixed assemblage of a red alga and cyanobacterium: Structure clarification and biological properties. Toxicon, 55(2–3), 204–210.CrossRefGoogle Scholar
  44. Talsness, C. E. (2008). Overview of toxicological aspects of polybrominated diphenyl ethers: A flame-retardant additive in several consumer products. Environmental Research, 108, 158–167.CrossRefGoogle Scholar
  45. UNEP-POPS-COP-NOTIF-DN-CN524. English pdf. Accessed 17 Jan 2012.
  46. Utting, S. D. (1985). Influence of nitrogen availability on the biochemical composition of three unicellular marine algae of commercial importance. Aquacultural Engineering, 4, 175–190.CrossRefGoogle Scholar
  47. Vane, C. H., Ma, Y. J., Chen, S. J., & Mai, B. X. (2010). Increasing polybrominated diphenyl ether (PBDE) contamination in sediment cores from the inner Clyde Estuary, UK. Environmental Geochemistry and Health, 32, 13–21.CrossRefGoogle Scholar
  48. Walsh, G., Yoder, M. J., McLaughlin, L. L., & Lores, E. M. (1987). Responses of marine unicellular algae to brominated organic compounds in six growth media. Ecotoxicology and Environmental Safety, 14, 215–222.CrossRefGoogle Scholar
  49. Wollenberger, L., Dinan, L., & Breitholtz, M. (2005). Brominated flame retardants: activities in a crustacean development test and in an ecdysteroid screening assay. Environmental Toxicology and Chemistry, 24(2), 400–407.CrossRefGoogle Scholar
  50. Yang, C., Meng, X. Z., Chen, L., & Xia, S. (2011). Polybrominated diphenyl ethers in sewage sludge from Shanghai, China: Possible ecological risk applied to agricultural land. Chemosphere, 85, 418–423.CrossRefGoogle Scholar
  51. Zhang, K., Wan, Y., Giesy, J. P., Lam, M. H. W., Wiseman, S., Jones, P. D., & Hu, J. (2010). Tissue concentrations of polybrominated compounds in Chinese Sturgeon (Acipenser sinensis): Origin, hepatic sequestration, and maternal transfer. Environmental Science & Technology, 44, 5781–5786.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Estación de Ciencias Mariñas de Toralla (ECIMAT)VigoSpain
  2. 2.Instituto Español de OceanografíaCentro Oceanográfico de VigoVigoEspaña

Personalised recommendations