Advertisement

Water, Air, & Soil Pollution

, Volume 223, Issue 7, pp 3845–3857 | Cite as

Removal of Uranium(VI), Lead(II) at the Surface of TiO2 Nanotubes Studied by X-Ray Photoelectron Spectroscopy

  • M. Bonato
  • K. V. Ragnarsdottir
  • G. C. Allen
Article

Abstract

A thin film of well-ordered anatase TiO2 nanotubes prepared by anodic oxidation of titanium metal were synthesised and used as adsorbent medium for the purification of water from aqueous uranium and lead. The amount of subtracted metal ions was quantified by using X-ray photoelectron spectroscopy at the surface of the reacted TiO2 surface. Batch experiments for the sorption of U and Pb at the surface of the titania substrate were carried out in separated solution equilibrated with air of uranyl acetate and lead nitrate, in the pH range 3–9. For uranium, the experiments were also repeated in anoxic (N2) atmosphere. The amount of metal ions adsorbed onto the titania medium was quantified by measurements of the surface coverage expressed in atomic percent, by recording high-resolution XPS spectra in the Ti2p, U4f and Pb4f photoelectron regions. Adsorption of the uranyl species in air atmosphere as a function of pH showed an adsorption edge near pH 4 with a maximum at pH 7. At higher pH the presence of very stable uranyl–carbonate complexes prevented any further adsorption. Further adsorption increased until pH 8.5 was obtained when the uranyl solution was purged from dissolved CO2. Lead ion showed a sorption edge at pH 6, with a maximum uptake at pH 8. The results showed that the uptake of uranium and lead on the selected titania medium is remarkably sensitive to the solution pH. This study demonstrates the reliability of this type of material for treating water polluted with heavy metals as well as leachates from radioactive nuclear wastes.

Keywords

TiO2 nanotubes Water purification XPS Uranium Lead 

Notes

Acknowledgments

The authors would like to acknowledge support (to MB) from the Marie Curie Early Stage Training Programme (MEST-CT-2005-020828) MISSION of the European Commission during the course of this work. Thanks to P. Heard for the preparation of the TEM sample, R. Vincent for the TEM images and diffraction pattern, and K. Hallam for the XRD analysis.

Supplementary material

11270_2012_1153_MOESM1_ESM.pdf (2.1 mb)
ESM 1 (PDF 2148 kb)

References

  1. Abdel-Samad, H., & Watson, P. R. (1998). An XPS study of the Adsorption of lead on goethite (ά-FeOOH). Applied Surface Science, 136(1–2), 46–54.CrossRefGoogle Scholar
  2. Allen, G. C., & Holmes, N. R. (1993). Mixed valency behaviour in some uranium oxides studies by X-ray photoelectron spectroscopy. Canadian Journal of Applied Chemistry, 38(5), 124–130.Google Scholar
  3. Allen, G. C., Tucker, P. M., & Tyler, J. W. (1982). Oxidation of uranium dioxide at 298 K studied by using X-ray photoelectron spectroscopy. Journal of Physical Chemistry, 86(2), 224–228.CrossRefGoogle Scholar
  4. Amadelli, R., Maldotti, A., Sostero, S., & Carassiti, V. (1991). Photodeposition of uranium oxides onto TiO2 from aqueous uranyl solutions. Journal of the Chemical Society Faraday Transactions, 87(19), 3267–3273.CrossRefGoogle Scholar
  5. Angela, A. (2010). Impero. Mondadori, Milano: Viaggio nell’Impero di Roma seguendo una moneta.Google Scholar
  6. Bang, S., Patel, M., Lipponcott, L., & Meng, X. (2005). Removal of arsenic from groundwater by granular titanium dioxide adsorbent. Chemosphere, 60(3), 389–397.CrossRefGoogle Scholar
  7. Boily, J.-F., & Ilton, E. S. (2008). An independent confirmation of the correlation of Uf4 primary peaks and satellite structures of UVI UV and UIV in mixed valence uranium oxides by two-dimensional correlation spectroscopy. Surface Science, 602(24), 3637–3646.CrossRefGoogle Scholar
  8. Bonato, M. (2010). Metal oxide nanofabricated structures for the purification of water containing uranium, lead and arsenic. Ph.D. thesis. Bristol, UK: University of Bristol.Google Scholar
  9. Bonato, M., Allen, G. C., & Scott, T. B. (2008). Reduction of U(VI) to U(IV) on the surface of TiO2 anatase nanotubes. Micro & Nano Letters, 3(2), 56–61.CrossRefGoogle Scholar
  10. Bonato, M., Ragnarsdottir, K. V., Allen, G. C. (2009). TiO2 anatase nanotubes for the purification of uranium, arsenic and lead containing water: an X-ray Photoelectron Spectroscopy study. In A. Braun, P.A. Alivisatos, E. Figgemeier, J. A. Turner, J. Ye, E.A. Chandler (Eds.), MRS 2009 Spring Meeting, volume MRS Proceedings Volume 1171E of Symposium S. Material Research Society.Google Scholar
  11. Bowell, R. J. (1994). Sorption of arsenic by iron oxides and oxyhydroxides in soils. Applied Geochemistry, 9(3), 279–286.CrossRefGoogle Scholar
  12. Brannvall, M.-L., Bindler, R., Emteryd, O., & Renberg, I. (1997). Stable isotope and concentration records of atmospheric lead pollution in peat and lake sediments in Sweden. Water, Air, and Soil Pollution, 100(3–4), 243–252.CrossRefGoogle Scholar
  13. Chen, Y., & Dionysiou, D. D. (2008). Sol-gel synthesis of nanostructured TiO 2 films for water purification in sol-gel methods for materials processing (pp. 67–75). Netherlands: Springer.Google Scholar
  14. Chen, D., & Ray, A. K. (2001). Removal of toxic metal ions from wastewater by semiconductor photocatalysis. Chemical Engineering Science, 56(4), 1561–1570.CrossRefGoogle Scholar
  15. Chen, J., Ollis, D. F., Rulkens, W. H., & Bruning, H. (1999). Photocatalyzed deposition and concentration of soluble uranium(VI) from TiO2 suspensions. Colloids and Surfaces, 151(1–2), 339–349.Google Scholar
  16. Dalton, J. S., Janes, P. A., Jones, N. G., Nicholson, J. A., Hallam, K. R., & Allen, G. C. (2002). Photocatalytic oxidation of NOx gases using TiO2: a surface spectroscopic approach. Environmental Pollution, 120(2), 415–422.CrossRefGoogle Scholar
  17. Dutta, P. K., Ray, A. K., Sharma, V. K., & Millero, F. J. (2004). Adsorption of arsenate and arsenite on titanium dioxide suspensions. Journal of Colloid and Interface Science, 278(2), 270–275.Google Scholar
  18. Eliet, V., & Bidoglio, G. (1998). Kinetic of the laser-induced photoreduction of U(VI) in aqueous suspension of TiO2 particles. Environmental Science and Technology, 32(20), 3155–3161.CrossRefGoogle Scholar
  19. Fergusson, J. E. (1986). Lead: petrol lead in the environment and its contribution to human blood lead levels. Science of the Total Environment, 50, 1–54.CrossRefGoogle Scholar
  20. Fuerstenau, M. C., & Palmer, B. R. (1976). Flotation, volume 1 of A.M. Gaudin memorial volume. New York: AIME Inc.Google Scholar
  21. Fujishima, A., & Honda, K. (1972). Electrochemical photolysis of water at a semiconductor electrode. Nature, 37(5358), 238–239.Google Scholar
  22. Gavrilescu, M., Pavel, L. V., & Cretescu, I. (2009). Characterization and remediation of soils contaminated with uranium. Journal of Hazardous Materials, 163(2–3), 475–510.CrossRefGoogle Scholar
  23. Gidikova, P., & Deliradev, R. (1998). Subscribed content air lead pollution and lead exposure of experimental animals and children in Stara Zagora town (Bulgaria). International Journal of Environmental Health Research, 8(4), 303–313.CrossRefGoogle Scholar
  24. Gong, D., Grimes, C. G., Varghese, O. K., Hu, W., Singh, R. S., Chen, Z., & Dickey, E. C. (2001). Titanium oxide nanotube arrays prepared by anodic oxidation. Journal of Materials Research, 16(12), 3331–3334.CrossRefGoogle Scholar
  25. Gupta, A. R., & Venkatarami, B. (1988). Sorption of uranyl ions on hydrous oxides. a new surface hydrolysis model. Bulletin of the Chemical Society of Japan, 61(4), 1357–1362.CrossRefGoogle Scholar
  26. Harrison, R. M. (2001). Pollution: causes, effects and control (4th ed.). London: Royal Society of Chemistry.Google Scholar
  27. Ho, C. H., & Doern, D. (1985). The adsorption of uranyl species on a hematite sol. Canadian Journal of Chemistry, 63(5), 1100–1104.CrossRefGoogle Scholar
  28. Ilton, E. S., Boily, J., & Bagus, P. S. (2007). Beam induced reduction of U(VI) during X-ray photoelectron spectroscopy: the utility of the U4f satellite structure for identifying uranium oxidation states in mixed valence uranium oxides. Surface Science, 601(4), 908–916.CrossRefGoogle Scholar
  29. Jaffrezic-Renault, N., & Andreade-Martins, H. (1980). Study of retention mechanism of uranium on titanium dioxide. Journal of Radioanalytical Chemistry, 55(2), 307–316.CrossRefGoogle Scholar
  30. Jezequel, H., & Chu, K. H. (2006). Removal of arsenate from aqueous solution by adsorption on titanium dioxide nanoparticles. Journal of Environmental Science & Health Part A, 41(8), 1519–1528.Google Scholar
  31. Lieser, K. H., & Thybusch, B. (1988). Sorption of uranyl ions on hydrous titanium dioxide. Fresenius’ Journal of Analytical Chemistry, 332(4), 351–357.CrossRefGoogle Scholar
  32. Liu, Q., & Laskowski, J. S. (1989). The interactions between dextrin and metal hydroxides in aqueous solutions. Journal of Colloid and Interface Science, 130(1), 101–104.CrossRefGoogle Scholar
  33. Liu, Q., & Liu, Y. (2003). Distribution of Pb(II) species in aqueous solutions. Journal of Colloid and Interface Science, 268(1), 266–269.CrossRefGoogle Scholar
  34. Macák, J. M., Tsuchiya, H., & Schmuki, P. (2005). High-aspect-ratio TiO2 nanotubes by anodization of titanium. Angewandte Chemie International Edition, 44(14), 2100–2102.CrossRefGoogle Scholar
  35. Marani, D., Macchi, G., & Pagano, M. (1995). Lead precipitaiton in the presence of sulphate and carbonate; testing the thermodynamic predictions. Water Research, 29(4), 1085–1092.CrossRefGoogle Scholar
  36. Mercier, L., & Pinnavaia, T. J. (1998). Heavy metal ion adsorbents formed by the grafting of a thiol functionality to mesoporous silica molecular sieves: factors affecting Hg(II) uptake. Environmental Science and Technology, 32(18), 2749–2754.CrossRefGoogle Scholar
  37. Mercier-Bion, F., Drot, R., Ehrhardt, J., Lambert, J., Roques, J., & Simoni, E. (2010). X-ray photoreduction of U(VI)-bearing compounds. Surface and Interface Analysis, 43(4), 777–783.CrossRefGoogle Scholar
  38. Murruni, L., Leyva, G., & Litter, M. I. (2007). Photocatalytic removal of Pb(II) over TiO2 and Pt-TiO2 powders. Catalysis Today, 129(1–2), 127–135.CrossRefGoogle Scholar
  39. Murruni, L., Conde, F., Leyva, G., & Litter, M. I. (2008). Photocatalytic reduction of Pb(II) over TiO2: new insight on the effect of different electron donors. Applied Catalysis B: Environmental, 84(3–4), 563–569.CrossRefGoogle Scholar
  40. Oeh, U., Priest, N. D., Roth, P., Ragnarsdottir, K. V., Li, W. B., Höllriegl, V., Thirlwall, M. F., Michalke, B., Giussani, A., Schramel, P., & Paretzke, H. G. (2007). Measurements of daily urinary uranium excretion in German peacekeeping personnel and residents of the Kosovo region to assess potential intakes of depleted uranium (DU). Science of the Total Environment, 381(1–3), 77–87.CrossRefGoogle Scholar
  41. Piraux, J. J., Riga, J., Thibaut, E., Tenret-Noel, C., Caudano, R., & Virbis, J. J. (1977). Shake-up satellites in the X-ray photoelectron spectra of uranium oxides and fluorides. A band structure scheme for uranium dioxide, UO2. Chemical Physics, 22(1), 113–120.CrossRefGoogle Scholar
  42. Plant, J., Voulvoulis, N., & Ragnarsdottir, K. V. (2011). Pollutants, human health and the environment. A risk approach (p. 356). Hoboken, NJ: Wiley Blackwell.CrossRefGoogle Scholar
  43. Prikryl, J. D., Jain, A., Turner, D. R., & Pabalan, R. T. (2001). UraniumVI sorption behavior on silicate mineral mixtures. Journal of Contaminant Hydrology, 47(2–4), 241–253.CrossRefGoogle Scholar
  44. Ragnarsdottir, K. V., & Charlet, L. (2000). Uranium behaviour in natural environments. In: Environmental mineralogy: microbial interactions, anthropogenic influences, contaminated land and waste management. London: Mineralogical Society.Google Scholar
  45. Riba, O., Scott, T. B., Ragnarsdottir, K. V., & Allen, G. C. (2008). Reaction mechanism of uranyl in the presence of zero-valent iron nanoparticles. Geochimica et Cosmochimica Acta, 72(16), 4047–4057.CrossRefGoogle Scholar
  46. Savage, N., Chwieroth, B., Ginwalla, A., Patton, B. R., Akbar, S. A., & Dutta, P. K. (2001). Composite n-p semiconducting titanium dioxide as gas sensor. Sensors and Actuators B: Chemical, 79(1), 17–27.CrossRefGoogle Scholar
  47. Scott, T. B., Riba, T. O., & Allen, G. C. (2007). Aqueous uptake of uranium onto pyrite surfaces; reactivity of fresh versus weathered material. Geochimica et Cosmochimica Acta, 71(21), 5044–5053.CrossRefGoogle Scholar
  48. Sherman, D. M., Peacock, C. L., & Hubbard, C. G. (2008). Surface complexation of U(VI) on goethite (R-FeOOH). Geochimica et Cosmochimica Acta, 72(2), 298–310.CrossRefGoogle Scholar
  49. Tanaka, K., Harada, K., & Murata, S. (1986). Photocatalytic deposition of metal ions onto TiO2 powder. Solar Energy, 36(2), 159–161.CrossRefGoogle Scholar
  50. Torres, J., & Cervera-March, S. (1992). Kinetic of the photoassisted catalytic oxidation of Pb(II) in TiO2 suspensions. Chemical Engineering Science, 47(15–16), 3857–3862.CrossRefGoogle Scholar
  51. Tripathy, S. S., & Raichur, A. M. (2003). Enhanced adsorption capacity of activated alumina by impregnation with alum for removal of As(V) from water. Chemical Engineering Journal, 138(1–3), 179–186.Google Scholar
  52. Tsunashima, A., Brindley, G. W., & Bastovanov, M. (1981). Adsorption of uranium from solutions by mentmorillonite; compositions ans properties of uranyl montmorillonites. Clays and Clay Minerals, 29(1), 10–16.CrossRefGoogle Scholar
  53. UNEP, United Nations Environment Programme (2001). Depleted uranium in Kosovo post-conflict environmental assessment. Technical report, UN.Google Scholar
  54. Varghese, O. K., Gong, D., Paulose, M., Ong, K. G., Dickey, E. C., & Grimes, C. A. (2003). Extreme changes in the electrical resistance of titania nanotubes with hydrogen exposure. Advanced Materials, 15(7–8), 624–627.CrossRefGoogle Scholar
  55. Vohra, M., & Davis, A. P. (1997). Adsorption of Pb, NTA and Pb(II)-NTA onto TiO2. Journal of Colloid and Interface Science, 194(1), 59–67.CrossRefGoogle Scholar
  56. Wagner, C. D., Davis, L. E., Zeller, M. V., Taylor, J. A., Raymond, R. H., & Gale, L. H. (1981). Empirical atomic sensitivity factors for quantitative analysis by electron spectroscopy for chemical analysis. Surface and Interface Analysis, 3(5), 211–225.CrossRefGoogle Scholar
  57. Waite, T. D., Davies, J. A., Payne, T. E., Waychunas, G. A., & Xu, N. (1994). Uranium adsorption on ferrihydrite: application of a surface complexation model. Geochimica et Cosmochimica Acta, 58(24), 5465–5478.CrossRefGoogle Scholar
  58. Wazne, M., Meng, X., Korfiatis, G. P., & Christodoulatos, C. (2006). Carbonate effecto on exavalent uranium removal from water by nanocrystalline titanium dioxide. Journal of Hazardous Materials, 136(1), 47–51.CrossRefGoogle Scholar
  59. Xu, Y. M., Wang, R.-S., & Wu, F. (1999). Surface characters and adsorption behavior of Pb(II) onto a mesoporous titanosilicate molecular sieve. Journal of Colloid and Interface Science, 209(2), 380–385.CrossRefGoogle Scholar
  60. Yang, H., Li, W.-Y., & Rajeshwarm, K. (1999). Homogeneous and heterogeneous photocatalytic reactions involving As(III) and As(V) species in aqueous media. Journal of Photochemistry and Photobiology A, 123(1–3), 137–143.CrossRefGoogle Scholar
  61. Yoshida, T., Yamaguchi, T., Iida, Y., & Nakayama, S. (2003). XPS study of Pb(II) adsorption on -Al2O3 surface at high pH conditions. Journal of Nuclear Science and Technology, 40(9), 672–678.CrossRefGoogle Scholar
  62. Zhijun, G., Zhaoyun, Y., & Zuyi, T. (2004). Sorption of uranyl ions on TiO2: effect of contact time, ionic strength, concentration and humic acid. Journal of Radioanalytical and Nuclear Chemistry, 261(1), 157–162.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • M. Bonato
    • 1
    • 2
  • K. V. Ragnarsdottir
    • 3
    • 4
  • G. C. Allen
    • 1
  1. 1.Interface Analysis CentreUniversity of BristolBristolUK
  2. 2.Laboratoire de Chimie Physique-Matière et RayonnementUniversité Pierre et Marie CurieParisFrance
  3. 3.Department of Earth SciencesUniversity of BristolBristolUK
  4. 4.Institute of Earth Sciences, School of Engineering and Natural SciencesUniversity of IcelandReykjavikIceland

Personalised recommendations