Water, Air, & Soil Pollution

, Volume 223, Issue 7, pp 3701–3719 | Cite as

Nitrogen and Carbon Dynamics and the Role of Enchytraeid Worms in Decomposition of L, F and H Layers of Boreal Mor

  • Ari LaurénEmail author
  • Mari Lappalainen
  • Päivi Saari
  • Jussi V. K. Kukkonen
  • Harri Koivusalo
  • Sirpa Piirainen
  • Heikki Setälä
  • Tytti Sarjala
  • Dan Bylund
  • Jaakko Heinonen
  • Mika Nieminen
  • Marjo Palviainen
  • Samuli Launiainen
  • Leena Finér


Decomposition of organic material releases carbon dioxide (CO2) into the atmosphere, and dissolved organic carbon (DOC), dissolved organic nitrogen (DON) and ammonium (NH4–N) into soil water. Each of the decomposition products contributes differently to overall export of carbon (C) and nitrogen (N) to water courses. Our aim was to study the quantity and composition of the released C and N as affected by the organic material and soil fauna, represented by enchytraeid worms. We measured the release rate of carbon dioxide, and calculated the release rates for DOC and dissolved N in soil from repeated measurements of DOC and N pools during laboratory incubation of litter (L), fermented (F) and humus (H) layers of boreal forest mor. The intermediate decomposition products, DOC and DON, were characterised according to the molecule size. The release rate of the decomposition products was higher for fresh than for old organic material. The majority of N and C were released as NH4–N and CO2, respectively. The amount of extractable organic N in soil decreased by time but DON increased. Enchytraeids stimulated N mineralisation and the release of large molecule size DOC, particularly in L layer. The results suggest that organic N in extractable form biodegrades effectively, and that soil fauna have an important role in the decomposition. The results were interpreted from the water quality point of view and the implications of the results to modelling of decomposition and export of DOC and dissolved N to recipient water bodies are discussed. In the modelling context, the novelty of the study is the description of the intermediate decomposition products and the division of the dissolved organic compounds into low molecular weight and high molecular weight fractions.


Ammonium Carbon dioxide Dissolved organic carbon Dissolved organic nitrogen Nitrate Soil fauna 



This study was financed by the Academy of Finland (projects 121991 and 214545) and by the Ministry of Agriculture and Forestry (HAME project).


  1. Andersson, S., & Nilsson, S. I. (2001). Influence of pH and temperature on microbial activity, substrate availability of soil-solution bacteria and leaching of dissolved organic carbon in a mor humus. Soil Biology and Biochemistry, 33, 1181–1191.CrossRefGoogle Scholar
  2. Andersson, S., Nilsson, I., & Saetre, P. (2000). Leaching of dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) in a mor humus as affected by temperature and pH. Soil Biology and Biochemistry, 32, 1–10.CrossRefGoogle Scholar
  3. Andersson, C., Berggren, D., & Nilsson, I. (2002). Indices for nitrogen status and nitrate leaching from Norway spruce (Picea abies (L.) Karst.) stands in Sweden. Forest Ecology and Management, 157, 39–53.CrossRefGoogle Scholar
  4. Berg, B., & McClaugherty, C. (2003). Plant litter. Decomposition, humus formation, carbon sequestration. Berlin: Springer.Google Scholar
  5. Briones, M. J., & Ineson, P. (2002). Use of 14C carbon dating to determine feeding behaviour of enchytraeids. Soil Biology and Biochemistry, 34, 881–884.CrossRefGoogle Scholar
  6. Brookes, P. C., Landman, A., Pruden, G., & Jenkinson, D. S. (1985). Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology and Biochemistry, 17, 837–842.CrossRefGoogle Scholar
  7. Cajander, A. K. (1949). Forest types and their significance. Acta Forestalia Fennica, 56, 1–72.Google Scholar
  8. Chertov, O. G., & Komarov, A. S. (1997). SOMM—a model of soil organic matter dynamics. Ecological Modelling, 94, 177–189.CrossRefGoogle Scholar
  9. Chertov, O. G., Komarov, A. S., Nadporozhskaya, M., Bykhovets, S. S., & Zudin, S. L. (2001). ROMUL—a model of forest soil organic matter dynamics as a substantial tool for forest ecosystem modelling. Ecological Modelling, 138, 289–308.CrossRefGoogle Scholar
  10. Cole, L., Bradgett, R. D., & Ineson, P. (2000). Enchytraeid worms (Oligochaeta) enhance mineralization of carbon in organic upland soil. European Journal of Soil Science, 51, 185–192.CrossRefGoogle Scholar
  11. Cole, L., Bradgett, R. D., Ineson, P., & Hobbs, P. J. (2002). Enchytraeid worm (Oligochaeta) influences on microbial community structure, nutrient dynamics and plant growth in blanket peat subject to warming. Soil Biology and Biochemistry, 34, 83–92.CrossRefGoogle Scholar
  12. Devito, K. J., Westbrook, C. J., & Schiff, S. L. (1999). Nitrogen mineralization and nitrification in upland and peatland forest soils in two Canadian Shield catchments. Canadian Journal of Forest Research, 29, 1793–1804.CrossRefGoogle Scholar
  13. Didden, W. A. M. (1993). Ecology of terrestrial Enchytraeidae. Pedobiologia, 37, 2–29.Google Scholar
  14. Drebs, A., Nordlund, A., Karlsson, P., Helminen, J., & Rissanen, P. (2002). Climatological statistics of Finland 1971–2000. Helsinki: Finnish Meteorological Institute.Google Scholar
  15. FAO. (1988). Food and Agriculture Organization FAO/UNESCO soil map of the world (revised legend). World Resources Report, 60, Rome. Reprinted as Technical Paper 20, 1989. Wageningen: ISRIC.Google Scholar
  16. Finér, L., Ahtiainen, M., Mannerkoski, H., Möttönen, V., Piirainen, S., Seuna, P., & Starr, M. (1997). Effects of harvesting and scarification on water and nutrient fluxes. A description of catchment and methods, and results from the pretreatment calibration period. Finnish Forest Research Institute, Research Papers, 648.Google Scholar
  17. Finér, L., Mannerkoski, M., Piirainen, S., & Starr, M. (2003). Carbon and nitrogen pools in an old-growth, Norway spruce mixed forest in eastern Finland and changes associated with clear-cutting. Forest Ecology and Management, 174, 51–63.CrossRefGoogle Scholar
  18. Fujii, K., Hayakawa, C., Van Hees, P. A., Funakawa, S., & Kosaki, T. (2010). Biodegradation of low molecular weight organic compounds and their contribution to heterotrophic soil respiration in three Japanese forest soils. Plant and Soil, 334, 475–489.CrossRefGoogle Scholar
  19. Ge, Z. M., Zhou, X., Kellomäki, S., Wang, K. Y., Peltola, H., Väisänen, H., & Strandman, H. (2010). Effects of changing climate on water and nitrogen availability with implications on the productivity of Norway spruce stands in southern Finland. Ecological Modelling, 221, 1731–1743.CrossRefGoogle Scholar
  20. Gödde, M., David, M. B., Christ, M. J., Kaupenjohann, M., & Vance, G. F. (1996). Carbon mobilization from the forest floor under red spruce in the northeastern USA. Soil Biology and Biochemistry, 28, 1181–1189.CrossRefGoogle Scholar
  21. Huhta, V. (1976). Effects of clear-cutting on numbers, biomass and community respiration of soil invertebrates. Annales Zoologici Fennici, 13, 63–80.Google Scholar
  22. Huotari, J., Ojala, A., Peltomaa, E., Nordbo, A., Launiainen, S., Pumpanen, J., Rasilo, T., Hari, P., & Vesala, T. (2011). Long–term direct CO2 flux measurements over a boreal lake: five years of eddy covariance data. Geophysical Research Letters, 38, L18401. doi: 10.1029/2011GL048753.CrossRefGoogle Scholar
  23. Jansson, P.-E., & Karlberg, L. (2001). Coupled heat and mass transfer model for soil–plant–atmosphere systems. Stockholm: Department of Civil and Environmental Engineering, Royal Institute of Technology.Google Scholar
  24. Jones, D., Shannona, D., Murphy, D. V., & Farrar, J. (2004). Role of dissolved organic nitrogen (DON) in soil N cycling in grassland soils. Soil Biology and Biochemistry, 36, 746–756.CrossRefGoogle Scholar
  25. Kalbitz, K., Schmerwitz, J., Schwesig, D., & Matzner, E. (2003). Biodegradation of soil-derived dissolved organic matter as related to its properties. Geoderma, 112, 273–291.CrossRefGoogle Scholar
  26. Kellomäki, S., & Väisänen, H. (1997). Modelling the dynamics of the forest ecosystem for climate change studies in the boreal conditions. Ecological Modelling, 97, 121–140.CrossRefGoogle Scholar
  27. Kiikkilä, O., Kitunen, V., & Smolander, A. (2006). Dissolved soil organic matter from surface horizons under birch and conifers: degradation in relation to chemical characteristics. Soil Biology and Biochemistry, 38, 737–746.CrossRefGoogle Scholar
  28. Kjønaas, O. J., & Wright, R. F. (1998). Nitrogen leaching from N limited forest ecosystems: the MERLIN model applied to Gårdsjön, Sweden. Hydrology and Earth System Sciences, 2, 415–429.CrossRefGoogle Scholar
  29. Kolari, P. (2010). Carbon balance and component CO2 fluxes in boreal Scots pine stands. Dissertationes Forestales 99.Google Scholar
  30. Kolari, P., Pumpanen, J., Rannik, Ü., Ilvesniemi, H., Hari, P., & Beringer, F. (2004). Carbon balance of different aged Scots pine forests in southern Finland. Global Change Biology, 10, 1106–1119.CrossRefGoogle Scholar
  31. Komarov, A. S., Chertov, O. G., Zudin, S. L., Nadporozhskaya, M., Mikhailov, A. V., Bykhovets, S., Zudina, E., & Zoubkova, E. (2003). EFIMOD 2—a model of growth and cycling of elements in boreal forest ecosystems. Ecological Modelling, 170, 373–392.CrossRefGoogle Scholar
  32. Kortelainen, P., Mattsson, T., Finér, L., Ahtiainen, M., Saukkonen, S., & Sallantaus, T. (2006). Controls on the export of C, N, P and Fe from undisturbed boreal catchments, Finland. Aquatic Science, 68, 453–468.CrossRefGoogle Scholar
  33. Laakso, J., & Setälä, H. (1999). Sensitivity of primary production to changes in the architecture of belowground foodwebs. Oikos, 87, 57–64.CrossRefGoogle Scholar
  34. Laine-Kaulio, H. (2011). Development and analysis of a dual-permeability model for subsurface stormflow and solute transport in a forested hillslope. Aalto University Publication Series, Doctoral Dissertations 71. 166 p.Google Scholar
  35. Laurén, A., Finér, L., Koivusalo, H., Kokkonen, T., Karvonen, T., Kellomäki, S., Mannerkoski, H., & Ahtiainen, M. (2005). Water and nitrogen processes along a typical water flowpath and streamwater exports from a forested catchment and changes after clear-cutting: a modelling study. Hydrology and Earth System Sciences, 9(6), 657–674.CrossRefGoogle Scholar
  36. Laurén, A., Koivusalo, H., Ahtikoski, A., Kokkonen, T., & Finér, L. (2007). Water protection and buffer zones: how much does it cost to reduce nitrogen load in a forest cutting? Scandinavian Journal of Forest Research, 22(6), 537–544.CrossRefGoogle Scholar
  37. Lepistö, A. (1994). Areas contributing to generation of runoff and nitrate leaching as estimated by empirical isotope methods and TOPMODEL. Aqua Fennica, 24, 103–120.Google Scholar
  38. Mäkipää, R., Linkosalo, T., Niinimäki, S., Komarov, A., Bykhovets, S., Tahvonen, O., & Mäkelä, A. (2011). How forest management and climate change affect the carbon sequestration of a Norway spruce stand. Journal of Forest Planning, 16, 107–120.Google Scholar
  39. Manzoni, S., & Porporato, A. (2009). Soil carbon and nitrogen mineralization: theory and models across scales. Soil Biology and Biochemistry, 41, 1355–1379.CrossRefGoogle Scholar
  40. Marschner, B., & Kalbitz, K. (2003). Controls of bioavailability and biodegradability of dissolved organic matter in soils. Geoderma, 113, 211–235.CrossRefGoogle Scholar
  41. Matala, J., Hynynen, J., Miina, J., Ojansuu, R., Peltola, H., Sievänen, R., Väisänen, H., & Kellomäki, S. (2003). Comparison of a physiological model and a statistical model for prediction of growth and yield in boreal forests. Ecological Modelling, 16, 95–116.CrossRefGoogle Scholar
  42. Matson, P. A., Gower, S. T., Volkman, C., Billow, C., & Grier, C. C. (1992). Soil nitrogen cycling and nitrous oxide flux in a Rocky Mountain Douglas-fir forest: effects of fertilization, irrigation and carbon addition. Biogeochemistry, 18, 101–117.CrossRefGoogle Scholar
  43. Mattsson, T., Finér, L., Kortelainen, P., & Sallantaus, T. (2003). Brook water quality and background leaching from unmanaged forested catchments in Finland. Water, Air, and Soil Pollution, 147, 275–297.CrossRefGoogle Scholar
  44. Müller, M., Alewell, C., & Hagedorn, F. (2009). Effective retention of litter-derived dissolved organic carbon in organic layers. Soil Biology and Biochemistry, 41, 1066–1074.CrossRefGoogle Scholar
  45. Münster, U., Salonen, K., & Tulonen, T. (1999). Decomposition. In J. Keskitalo & P. Eloranta (Eds.), Limnology of humic waters (pp. 225–264). Leiden: Backhuys.Google Scholar
  46. Niinistö, S., Silvola, J., & Kellomäki, S. (2004). Soil CO2 efflux in boreal pine forest under atmospheric CO2 enrichment and air warming. Global Change Biology, 10, 1363–1376.CrossRefGoogle Scholar
  47. Nurminen, M. (1967). Ecology of enchytraeids (Oligochaeta) in Finnish coniferous forest soil. Annales Zoologici Fennici, 4, 147–157.Google Scholar
  48. O’Connor, F. B. (1962). The extraction of Enchytraeidae from soil. In P. W. Murphy (Ed.), Progress in soil zoology (pp. 279–285). London: Butterworth.Google Scholar
  49. Paavolainen, L., & Smolander, A. (1998). Nitrification and denitrification in soil from a clear-cut Norway spruce (Picea abies) stand. Soil Biology and Biochemistry, 30(6), 775–781.CrossRefGoogle Scholar
  50. Palviainen, M., Finér, L., Piirainen, S., & Starr, M. (2005). Changes in above- and below-ground biomass and nutrient pools of ground vegetation after clear-cutting of a mixed boreal forest. Plant and Soil, 275, 157–167.CrossRefGoogle Scholar
  51. Park, J.-H., Kalbitz, K., & Matzner, E. (2002). Resource control on the production of dissolved organic carbon and nitrogen in a deciduous forest floor. Soil Biology and Biochemistry, 34, 813–822.CrossRefGoogle Scholar
  52. Persson, T., & Wirén, A. (1995). Nitrogen mineralization and potential nitrification at different depths in acid forest soils. Plant and Soil, 168–169, 55–65.CrossRefGoogle Scholar
  53. Persson, T., Rudebeck, A., Jussy, J. H., Colin-Belgrand, M., Priemé, A., Dambrine, E., Karlsson, P. S., & Sjöberg, R. M. (2000). Soil nitrogen turnover, mineralization, nitrification and denitrification in European forest soils. In E.-D. Schultze (Ed.), Carbon and nitrogen cycling in European forest ecosystems (pp. 295–331). Berlin: Springer.Google Scholar
  54. Piirainen, S. (2002). Nutrient fluxes through a boreal coniferous forest and effects of clear-cutting. Academic dissertation. The Finnish Forest Research Institute, Research Papers, 859.Google Scholar
  55. Piirainen, S., Finér, L., & Starr, M. (1998). Canopy and soil retention of nitrogen deposition in a mixed boreal forest in eastern Finland. Water, Air, and Soil Pollution, 105, 165–174.CrossRefGoogle Scholar
  56. Piirainen, S., Finér, L., Mannerkoski, M., & Starr, M. (2002). Effects of forest clear-cutting on carbon and nitrogen fluxes through podzolic soil horizons. Plant and Soil, 239, 301–311.CrossRefGoogle Scholar
  57. Pumpanen, J., Ilvesniemi, H., Perämäki, M., & Hari, P. (2003). Seasonal patterns of soil CO2 efflux and soil air CO2 concentration in a Scots pine forest: comparison of two chamber techniques. Global Change Biology, 9, 371–382.CrossRefGoogle Scholar
  58. Qualls, R. (2000). Comparison of the behavior of soluble organic and inorganic nutrients in forest soils. Forest Ecology and Management, 138, 29–50.CrossRefGoogle Scholar
  59. Qualls, R. G., & Richardson, C. J. (2003). Factors controlling concentration, export, and decomposition of dissolved organic nutrients in the Everglades of Florida. Biogeochemistry, 62, 197–229.CrossRefGoogle Scholar
  60. Sarkkola, S., Koivusalo, H., Laurén, A., Kortelainen, P., Mattsson, T., Palviainen, M., Piirainen, S., Starr, M., & Finér, L. (2009). Trends in hydrometeorological conditions and stream water organic carbon in boreal forested catchments. Science of the Total Environment, 408, 92–101.CrossRefGoogle Scholar
  61. Setälä, H., & Huhta, V. (1991). Soil fauna increase Betula pendula growth: laboratory experiments with coniferous forest floor. Ecology, 72, 665–671.CrossRefGoogle Scholar
  62. Siira-Pietikäinen, A., Pietikäinen, J., Fritze, H., & Haimi, J. (2001). Short-term responses of soil decomposer communities to forest management: clear felling versus alternative forest harvesting methods. Canadian Journal of Forest Research, 31, 88–99.CrossRefGoogle Scholar
  63. Sparling, G. P., Feltham, C. W., Reynolds, J., West, A. W., & Singleton, P. (1990). Estimation of soil microbial C by a fumigation-extraction method: use on soils of high organic matter content, and a reassessment of the kEC-factor. Soil Biology and Biochemistry, 22(3), 301–307.CrossRefGoogle Scholar
  64. van Vliet, P. C. J., Beare, M. H., Coleman, D. C., & Hendrix, P. F. (2004). Effects of enchytraeids (Annelida: Oligochaeta) on soil carbon and nitrogen dynamics in laboratory incubations. Applied Soil Ecology, 25, 147–160.CrossRefGoogle Scholar
  65. Vandenbruwane, J., De Neve, S., Qualls, R. G., Sleutel, S., & Hofmen, G. (2007). Comparison of different isotherm models for dissolved organic carbon (DOC) and nitrogen (DON) sorption to mineral soil. Geoderma, 139, 144–153.CrossRefGoogle Scholar
  66. Widén, B., & Majdi, H. (2001). Soil CO2 efflux and root respiration at three sites in a mixed pine and spruce forest: seasonal and diurnal variation. Canadian Journal of Forest Research, 31, 786–796.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Ari Laurén
    • 1
    Email author
  • Mari Lappalainen
    • 1
  • Päivi Saari
    • 1
    • 2
  • Jussi V. K. Kukkonen
    • 3
  • Harri Koivusalo
    • 4
  • Sirpa Piirainen
    • 1
  • Heikki Setälä
    • 5
  • Tytti Sarjala
    • 6
  • Dan Bylund
    • 7
  • Jaakko Heinonen
    • 1
  • Mika Nieminen
    • 8
  • Marjo Palviainen
    • 9
  • Samuli Launiainen
    • 1
  • Leena Finér
    • 1
  1. 1.Joensuu UnitFinnish Forest Research InstituteJoensuuFinland
  2. 2.Centre for Economic Development, Transport and the Environment, Central FinlandJyväskyläFinland
  3. 3.Department of BiologyUniversity of Eastern FinlandJoensuuFinland
  4. 4.Department of Civil and Environmental EngineeringAalto University School of EngineeringAaltoFinland
  5. 5.Department of Environmental SciencesUniversity of HelsinkiLahtiFinland
  6. 6.Parkano UnitFinnish Forest Research InstituteParkanoFinland
  7. 7.Department of Natural Sciences, Engineering and MathematicsMid Sweden UniversitySundsvallSweden
  8. 8.Vantaa UnitFinnish Forest Research InstituteVantaaFinland
  9. 9.Department of Forest SciencesUniversity of HelsinkiHelsinkiFinland

Personalised recommendations