Water, Air, & Soil Pollution

, Volume 223, Issue 7, pp 3643–3646 | Cite as

Biomaterials from Agricultural Waste: Eggshell-based Hydroxyapatite

  • N. Elizondo-Villarreal
  • A. Martínez-de-la-Cruz
  • R. Obregón Guerra
  • J. L. Gómez-Ortega
  • L. M. Torres-Martínez
  • V. M. Castaño
Article

Abstract

Hydroxyapatite (HAp) was produced through the hydrothermal conversion of agro-industry byproducts (eggshells). Commercial calcium dibasic phosphate (CaHPO4.2H2O) and lime (CaO), obtained from direct calcining of the eggshells, were the reactants in the synthesis scheme employed. X-ray powder diffraction and scanning electron microscopy confirmed the HAp as the main phase present in the final products.

Keywords

Agro-industry Solid waste Eggshell Biomaterials 

References

  1. Akao, M., Aoki, H., & Kato, K. (1981). Journal of Materials Science, 16, 809.CrossRefGoogle Scholar
  2. Bucholz, R. W. (1989). Interporous hydroxyapatite as a bone graft substitute in tibial plateu fractures. Clinical Orthopaedics, 240, 53–62.Google Scholar
  3. Cowin, S. C. (1989). Bone mechanics (p. 100). Boca Raton, FL: CRS Press, Inc.Google Scholar
  4. Daculsi, G. (1998). Biphasic calcium phosphate concept applied to artificial bone, implant coating and injectable bone substitute. Biomaterials, 19(16), 1473–1478.CrossRefGoogle Scholar
  5. Ewers, R., & Simons, B. (1992). The phycogene hydroxyapatite—a new interconnecting porous material. In D. Muster (Ed.), Biomaterials—hard tissue repair and replacement (Vol. 3). Amsterdam: Elsevier.Google Scholar
  6. Halouani, R., Bernache-Assolant, D., Champion, E., & Ababou, A. (1994). Journal of Materials Science. Materials in Medicine, 5, 563.CrossRefGoogle Scholar
  7. Hench, L. L. (1998). Bioceramics, Journal of the American Ceramic Society, 81, 1705–1728.Google Scholar
  8. Holmes, R. E. (1986). Porous hydroxyapatite as a bone-graft substitute in methaphyseal defects. Journal Bone and Joint Surgery, 68A, 904–911.Google Scholar
  9. Ioku, K., Yoshimura, M., & Sömiya, S. (1990). Biomaterials, 11, 57.CrossRefGoogle Scholar
  10. Jarcho, M., Boren, C. H., Thomas, M. B., Bobick, J., & Kay, J. F. (1976). Journal of Materials Science, 11, 2027.CrossRefGoogle Scholar
  11. Knowles, J. C., & Bonified, W. (1993). Journal of Biomedical Materials Research, 27, 1591.CrossRefGoogle Scholar
  12. Matsumura, Y., & Moffat, J. B. (1996). Journal of the Chemical Society, Faraday Transactions, 92, 1981.CrossRefGoogle Scholar
  13. Passuti, N. (1989) Calcium phosphate ceramics in orthopedic surgery. Presse Med.Google Scholar
  14. Piecuch, J. F. (1984). Compressive strength of implanted porous replamineform hydroxyapatite, J Biomed Mater Res, 18, 39–45.Google Scholar
  15. Shellis, R. P. (1999). Observation on apparent solubility of carbonate apatites. Journal of Colloid and Interface Science, 218(2), 351–358.CrossRefGoogle Scholar
  16. Yoshimura, M., & Suda, H. (1994). Hydrothermal processing of hydroxyapatite: past, present and future. In P. W. Brown & B. Constantz (Eds.), Hydroxyapatite and related materials. Boca Raton: CRC Press.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • N. Elizondo-Villarreal
    • 1
  • A. Martínez-de-la-Cruz
    • 2
  • R. Obregón Guerra
    • 1
  • J. L. Gómez-Ortega
    • 1
  • L. M. Torres-Martínez
    • 2
  • V. M. Castaño
    • 3
  1. 1.Facultad de Ciencias Físico-MatemáticasUniversidad Autónoma de Nuevo LeónMonterreyMexico
  2. 2.Facultad de Ciencias QuímicasUniversidad Autónoma de Nuevo LeónMonterreyMexico
  3. 3.Centro de Física Aplicada y Tecnología AvanzadaUniversidad Nacional Autónoma de MéxicoQuerétaroMexico

Personalised recommendations