Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Atmospheric Deposition and Inorganic Nitrogen Flux

  • 309 Accesses

  • 8 Citations

Abstract

Flux of dissolved inorganic nitrogen (DIN—primarily nitrate) from terrestrial ecosystems has been considered an important contributor to acidification of linked aquatic systems. The basis of this concern is the nitrogen (N) saturation hypothesis, positing that additions of N to terrestrial ecosystems in excess of biological requirements will result in DIN leaching. There is a consensus (implicit hypothesis) in the literature that atmospheric deposition of DIN in excess of a threshold of approximately 10 kg ha−1 year−1 leads to significant flux. Diverse data from USA indicate that DIN flux is highly variable both in space and time; the spatial uncertainty as measured by the pooled coefficient of variation is about 0.95, and the temporal (inter-year) uncertainty is about 0.75. The relationship between atmospheric deposition of DIN and annual flux is near-linear within the range of current deposition for US sites (≤8 kg ha−1 year−1 wet deposition). If wet and dry depositions are approximately equal, over 85 % of total DIN deposition is retained. This is nearly equal to the retention reported by the US Geological Survey National Water-Quality Assessment Program, which considered all nonpoint sources of N as inputs and both DIN and organic N as fluxes. Although input–output data have high uncertainty, the 85 % retention of atmospheric DIN by terrestrial watersheds casts doubt on its importance as a contributor to aquatic acidification. There is no obvious threshold of deposition leading to DIN leaching. The nitrogen saturation hypothesis may not fully explain N behavior in terrestrial ecosystems.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. Aber, J. D., Nadelhoffer, K. J., Steudler, P., & Melillo, J. M. (1989). Nitrogen saturation in northern forest ecosystems. Bioscience, 39, 378–386.

  2. Aber, J., McDowell, W., Nadelhoffer, K., Magill, A., Berntson, G., Kamakea, M., McNulty, S., Currie, W., Rustad, L., & Fernandez, I. (1998). Nitrogen saturation in temperate forest ecosystems. Bioscience, 48, 921–934.

  3. Aber, J. D., Goodale, C. L., Ollinger, S. V., Smith, M.-L., Magill, A. H., Martin, M. E., Hallett, R. A., & Stoddard, J. L. (2003). Is nitrogen deposition altering the nitrogen status of northeastern forests? Bioscience, 53, 375–389.

  4. Adams, M. B., Angradi, T. R., & Kochenderfer, J. N. (1997). Stream water and soil solution responses to 5 years of nitrogen and sulfur additions at the Fernow Experimental Forest, West Virginia. Forest Ecology and Management, 95, 79–91.

  5. Adams, M. B., Schiller T. M., Ford W. M., Kochenderfer J. N. (2003). Large woody debris in a second-growth central Appalachian hardwood stand: Volume, composition, and dynamics. In J.W. Van Sambeek, J.O. Dawson, F. Ponder, Jr, E.F. Loewenstein, and J.S. Fralish (Eds), Proceedings, 13th central hardwood forest conference. (p. 237-245.) USDA Forest Service, GTR NC-234.

  6. Adams, M. B., Edwards, P. J., Kochenderfer, J. N., & Wood, F. (2004). Fifty years of watershed research on the Fernow Experimental Forest, WV: Effects of forest management and air pollution on hardwood forests. In K. G. Renard, S. A. McElroy, W. J. Gburek, H. E. Canfield, & R. L. Scott (Eds.), First interagency conference on research in the watersheds, October 27–30, 2003, Benson, AZ (pp. 391–396). Tucson: USDA Agricultural Research Service, Southwest Watershed Research Center.

  7. Bernhardt, E. S., Likens, G. E., Hall, R. O., Jr., Buso, D. C., Fisher, S. C., Burton, T. M., Meyer, J. L., McDowell, W. M., Mayer, M. S., Bowden, W. E., Findlay, S. E. G., MacNeale, K. H., Stelzer, R. S., & Lowe, W. H. (2005). Can't see the forest for the stream? In-stream processing and terrestrial nitrogen exports. Bioscience, 55, 219–230.

  8. Boyer, E. W., Goodale, C. L., Jaworski, N. A., & Howarth, R. W. (2002). Anthropogenic nitrogen sources and relationships to riverine nitrogen export in the northeastern USA. Biogeochemistry, 57(58), 137–169.

  9. Brookshire, J., Gerber, S., Webster, J. R., Vose, J. M., & Swank, W. T. (2010). Direct effects of temperature on forest nitrogen cycling revealed through analysis of long term watershed records. Global Change Biology. doi:10.1111/J.1365-2486.2010.02245.x.

  10. Campbell, J. L., Hornbeck, J. W., Mitchell, M. J., Adams, M. B., Castro, M. S., Driscoll, C. T., Kahl, J. S., Kochenderfer, J. N., Likens, G. E., Lynch, J. A., Murdoch, P. S., Nelson, S. J., & Shanley, S. B. (2004). Input–output budgets of inorganic nitrogen for 24 forested watersheds in the northeastern united states: a review. Water, Air, and Soil Pollution, 151, 373–396.

  11. Canfield, D. E., Glazer, A. N., & Falkowski, P. G. (2010). The evolution and future of Earth’s nitrogen cycle. Science, 330, 192–196.

  12. Castro, M. S., Driscoll, C. T., Jordan, T. E., Reay, W. G., Boynton, W. R., Seitzinger, S. P., Styles, R. V., & Cable, J. E. (2001). Contributions of atmospheric deposition to the total nitrogen loads to thirty four estuaries on the Atlantic and Gulf coasts of the United States. In R. M. Valigura, R. B. Alexander, M. S. Castro, H. Greening, T. Meyers, H. Paerl, & R. E. Turner (Eds.), Nitrogen loading in coastal water bodies: An atmospheric perspective (pp. 77–90). Washington: Coastal and Estuarine Studies, American Geophysical Union.

  13. Compton, J. E., Church, M. R., Larned, S. T., & Hogsett, W. E. (2003). Nitrogen export from forested watersheds in the Oregon Coast Range: The role of N2-fixing red alder. Ecosystems, 6, 773–785.

  14. Dise, N. B., & Wright, R. F. (1995). Nitrogen leaching from European forests in relation to nitrogen deposition. Forest Ecology and Management, 71, 153–161.

  15. Driscoll, C. T., Schaefer, D. A., Molot, L. A., & Dillon, P. J. (1989). Summary of North American data. In J. L. Malanchuk & J. Nilsson (Eds.), The role of nitrogen in the acidification of surface waters (pp. 6-1–6-45). Copenhagen: Nordic Council of Ministers.

  16. Dubrovsky, N. M., Burow, K. R., Clark, G. M., Gronberg, J. M., Hamilton, P. A., Hitt, K. J., Mueller, D. K., Munn, M. D., Nolan, B. T., Puckett, I. J., Rupert, M. G., Short, T. M., Spahr, N. E., Sprague, L. A., & Wilber, W. G. (2010). The quality of our nation's waters—Nutrients in the nation's streams and groundwater, 1992–2004. U. S. Geological Survey Circular, 1350, 174.

  17. EPA (2011). Policy assessment for the review of the secondary national ambient air quality standards for oxides of nitrogen and oxides of sulfur. U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Health and Environmental Impacts Division, Research Triangle Park, NC. EPA-452/R-ll-005a.

  18. Galloway, J. N., Aber, J. D., Erisman, J. W., Seitzinger, S. P., Howarth, R. W., Cowling, E. B., & Cosby, B. J. (2003). The nitrogen cascade. Bioscience, 53(4), 341–356.

  19. Goodale, C. L., Aber, J. D., & McDowell, W. H. (2000). The long-term effects of disturbance on organic and inorganic nitrogen export in the White Mountains, New Hampshire. Ecosystems, 3, 433–450.

  20. Goodale, C. L., Thomas, S. A., Fredriksen, G., Elliott, E. M., Flinn, K. M., Butler, T. J., & Walter, M. T. (2009). Unusual seasonal patterns and inferred processes of N retention in forested headwaters of the Upper Susquehanna River. Biogeochemistry, 93, 197–218.

  21. Groffman, P. M., Law, N. L., Belt, K. T., Band, L. E., & Fisher, G. T. (2004). Nitrogen fluxes and retention in urban watershed ecosystems. Ecosystems, 7, 393–403.

  22. Gundersen, P., Callesen, I., & de Vries, W. (1998). Nitrate leaching in forest ecosystems is controlled by forest floor C/N ratio. Environmental Pollution, 102, 403–407.

  23. Gundersen, P., Schmidt, I. K., & Raulund-Rasmussen, K. (2006). Leaching of nitrate from temperate forests–effects of air pollution and forest management. Environmental Reviews, 14, 1–57.

  24. Ice, G., & Binkley, D. (2003). Forest streamwater concentrations of nitrogen and phosphorus. Journal of Forestry, 101, 21–28.

  25. Ito, M., Mitchell, M. J., Driscoll, C. T., & Roy, K. M. (2005). Nitrogen input–output budgets for lake-containing watersheds in the Adirondack region of New York. Biogeochemistry, 72, 283–314.

  26. Johnson, D. W. (1992). Nitrogen retention in forest soils. Journal of Environmental Quality, 21, 1–12.

  27. Johnson, S. & Fredriksen, R. (2010). Long-term stream chemistry concentrations and fluxes: Small watershed proportional samples in the Andrews Experimental Forest. Forest Science Data Bank, Corvallis, OR. [Database]. Available at http://andrewsforest.oregonstate.edu/data/abstract.cfm?dbcode=CF002. Accessed 25 October 2010.

  28. Jones, J. B., Petrone, K. C., Finlay, J. C., Hinzman, L. O., & Bolton, W. R. (2005). Nitrogen loss from watersheds of interior Alaska underlain with discontinuous permafrost. Geophysical Research Letters, 32, L02401. doi:10.1029/2004GL021734.

  29. Kane, E. S., Betts, E. F., Burgin, A. J., Clilverd, H. M., Crenshaw, C. L., Fellman, J. B., Myers-Smith, I. H., O'Donnell, J. A., Sobota, D. J., Van Verseveld, W. J., & Jones, J. B. (2008). Precipitation control over inorganic nitrogen import–export budgets across watersheds: A synthesis of long-term ecological research. Ecohydrology, 1, 105–117.

  30. Kristensen, H. L., Gundersen, P., Callesen, I., & Reinds, G. J. (2004). Relationships between soil nitrate concentrations and environmental factors. Ecosystems, 7, 180–192.

  31. Lovett, G. M., & Mitchell, M. J. (2004). Sugar maple and nitrogen cycling in the forests of eastern North America. Frontiers in Ecology and the Environment, 2(2), 81–88.

  32. Lovett, G. M., Weathers, K. C., & Sobczak, W. (2000). Nitrogen saturation and retention in forested watersheds of the Catskill Mountains, NY. Ecological Applications, 10, 73–84.

  33. MacDonald, J. A., Dise, N. B., Matzner, E., Armbruster, M., Gundersen, P., & Forsius, M. (2002). Nitrogen input together with ecosystem nitrogen enrichment predict nitrate leaching from European forests. Global Change Biology, 8, 1028–1033.

  34. McCormick, J. F., & Platt, R. B. (1980). Recovery of an Appalachian forest following the chestnut blight or Catherine Keever-you were right! American Midland Naturalist, 104, 264–273.

  35. Meixner, T., & Fenn, M. (2004). Biogeochemical budgets in a Mediterranean catchment with high rates of atmospheric N deposition—Importance of scale and temporal asynchrony. Biogeochemistry, 70, 331–356.

  36. Mulholland, P. J. (2004). The importance of in-stream uptake for regulating stream concentrations and outputs of N and P from a forested watershed: Evidence from long-term chemistry records for Walker Branch watershed. Biogeochemistry, 70, 403–426.

  37. NADP (2010). National Atmospheric Deposition Program/National Trends Network data. Available at http://nadp.sws.uiuc.edu/NADP/. Accessed 24 October 2010.

  38. Nilsson, S. I., Berggren, D., & Westling, O. (1998). Retention of deposited NH4+-N and NO 3 -N in coniferous forest ecosystems in Southern Sweden. Scandinavian Journal of Forest Research, 13, 393–401.

  39. Reay, D. S., Dentener, F., Smith, P., Grace, J., & Feely, R. A. (2008). Global nitrogen deposition and carbon sinks. Nature Geoscience, 1, 430–437.

  40. Riggan, P. J., Lockwood, R. N., Jacks, P. M., Colver, C. G., Weirich, F., DeBano, L. F., & Brass, J. A. (1994). Effects of fire severity on nitrate mobilization in watersheds subject to chronic atmospheric deposition. Environmental Science and Technology, 28, 365–379.

  41. Saucier, J. K. (1973). American chestnut: An American wood. USDA Forest Service, FS-230.

  42. Stoddard, J. L. (1994). Long-term changes in watershed retention of nitrogen: Its causes and aquatic consequences. In L. A. Baker (Ed.), Environmental chemistry of lakes and reservoirs (pp. 223–284). Washington: Advances in Chemistry Series, No. 237, American Chemical Society.

  43. Swank, W. T., & Vose, J. M. (1997). Long-term nitrogen dynamics of Coweeta forested watersheds in the southeastern United States of America. Global Biogeochemical Cycles, 11, 657–671.

  44. SYSTAT, Inc. (2007). Intelligent software, version 12.0. Evanston: SYSTAT, Inc.

  45. Thomas, R. Q., Canham, C. D., Weathers, K. C., & Goodale, C. L. (2010). Increased tree carbon storage in response to nitrogen deposition in the US. Nature Geoscience, 3, 13–17.

  46. USGS (2010). National Water-Quality Assessment Program data. Available at http://water.usgs.gov/nawqa/nutrients/pubs/circ1350/. Accessed 15 Oct 2010.

  47. Vitousek, P. M., & Reiners, W. A. (1975). Ecosystem succession and nutrient retention: a hypothesis. Bioscience, 25, 376–381.

  48. Vitousek, P. M. R. W., Howarth, G. E., Likens, P. A., Matson, D., Schindler, W. H. Schlesinger, & Tilman, G. D. (1997). Human alteration of the global nitrogen cycle: Causes and consequences. Issues in Ecology, 1, 1–17.

  49. Williard, K. W. J., DeWalle, D. R., Edwards, P. J., & Schnabel, R. R. (1997). Indicators of nitrate export from forested watersheds in the mid-Appalachians, United States of America. Global Biogeochemical Cycles, 11, 649–656.

Download references

Acknowledgments

This work was supported by the Electric Power Research Institute, Palo Alto, CA, through a contract with Tetra Tech, Inc., Lafayette, CA, and by the University of Minnesota Department of Soil, Water, and Climate.

Author information

Correspondence to D. F. Grigal.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Grigal, D.F. Atmospheric Deposition and Inorganic Nitrogen Flux. Water Air Soil Pollut 223, 3565–3575 (2012). https://doi.org/10.1007/s11270-012-1128-2

Download citation

Keywords

  • Nitrogen saturation
  • Aquatic acidification
  • Nitrogen retention
  • DIN variation