Skip to main content
Log in

Simultaneous Removal of H2S, NH3, and Ethyl Mercaptan in Biotrickling Filters Packed with Poplar Wood and Polyurethane Foam: Impact of pH During Startup and Crossed Effects Evaluation

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The present work discusses the startup and operation of different biotrickling filters during the simultaneous removal of NH3, H2S, and ethyl mercaptan (EM) for odor control, focusing on (a) the impact of pH control in the stability of the nitrification processes during reactor startup and (b) the crossed effects among selected pollutants and their by-products. Two biotrickling filters were packed with poplar wood chips (R1 and R2A), while a third reactor was packed with polyurethane foam (R2B). R2A and R2B presented a pH control system, whereas R1 did not. Loads of 2–10 g N–NH3 m−3 h−1, 5–16 g S–H2S m−3 h−1, and 1–6 g EM m−3 h−1 were supplied to the bioreactors. The presence of a pH control loop in R2A and R2B proved to be crucial to avoid long startup periods and bioreactors malfunctioning due to biological activity inhibition. In addition, the impact of the presence of different concentrations of a series of N species (NH +4 , NO 2 , and NO 3 ) and S species (SO 2−4 and S2−) on the performance of the two biotrickling filters was studied by increasing their load to the reactors. Sulfide oxidation proved to be the most resilient process, since it was not affected in any of the experiments, while nitrification and EM removal were severely affected. In particular, the latter was affected by SO 2−4 and NO 2 , while nitrification was significantly affected by NH +4 . The biotrickling filter packed with polyurethane foam was more sensitive to crossed effects than the biotrickling filter packed with poplar wood chips.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • An, T., Wan, S., Li, G., Sun, L., & Guo, B. (2010). Comparison of the removal of ethanethiol in twin-biotrickling filters inoculated with strain RG-1 and B350 mixed microorganisms. Journal of Hazardous Materials, 183, 372–380.

    Article  CAS  Google Scholar 

  • Anthonisen, A. C., Loehr, R. C., Prakasan, T. B. S., & Srinath, E. G. (1976). Inhibition of nitrification by ammonia and nitrous acid. J. Water Pollut. Control Fed., 48, 835–852.

    CAS  Google Scholar 

  • Baeza, J. A., Gabriel, D., & Lafuente, J. (1999). An expert supervisory system for a pilot WWTP. Environ. Modell. Softw., 14, 383–390.

    Article  Google Scholar 

  • Chung, Y. C., Huang, C., & Tseng, C. P. (2001). Biological elimination of H2S and NH3 from waste gases by biofilter packed with immobilized heterotrophic bacteria. Chemosphere, 43, 1043–1050.

    Article  CAS  Google Scholar 

  • Devinny, J. S., Deshusses, M. A., & Webster, T. (1999). Biofiltration for air pollution control. Boca Raton: CRC/Lewis.

    Google Scholar 

  • Dorado, A. D., Lafuente, J., Gabriel, D., & Gamisans, X. (2010). A comparative study based on physical characteristics of suitable packing materials in biofiltration. Environmental Technology, 31, 193–204.

    Article  CAS  Google Scholar 

  • Esøy, A., Ødegaard, H., & Bentzen, G. (1998). The effect of sulphide and organic matter on the nitrification activity in a biofilm process. Water Science and Technology, 37, 115–122.

    Article  Google Scholar 

  • Gabriel, D., & Deshusses, M. A. (2003). Retrofitting existing chemical scrubbers to biotrickling filters for H2S emission control. Proc. Natl. Acad. Sci. USA, 100, 6308–6312.

    Article  CAS  Google Scholar 

  • Galera, M. M., Cho, E., Tuuguu, E., Park, S. J., Lee, C., & Chung, W. J. (2008). Effects of pollutant concentration ratio on the simultaneous removal of NH3, H2S and toluene gases using rock wool-compost biofilter. Journal of Hazardous Materials, 152, 624–631.

    Article  CAS  Google Scholar 

  • Hassan, A. A., & Sorial, G. A. (2011). Treatment of dynamic mixture of hexane and benzene vapors in a trickle bed air biofilter integrated with cyclic adsorption/desorption beds. Chemosphere, 82, 521–528.

    Article  Google Scholar 

  • Hernández, J., Prado, Ó. J., Almarcha, M., Lafuente, J., & Gabriel, D. (2010). Development and application of a hybrid inert/organic packing material for the biofiltration of composting off-gases mimics. Journal of Hazardous Materials, 178, 665–672.

    Article  Google Scholar 

  • Ho, K. L., Chung, Y. C., Lin, Y. H., & Tseng, C. P. (2008). Microbial populations analysis and field application of biofilter for the removal of volatile-sulfur compounds from swine wastewater treatment system. Journal of Hazardous Materials, 152, 580–588.

    Article  CAS  Google Scholar 

  • Hort, C., Gracy, S., Platel, V., & Moynault, L. (2009). Evaluation of sewage sludge and yard waste compost as a biofilter media for the removal of ammonia and volatile organic sulfur compounds (VOSCs). Chemical Engineering Journal, 152, 44–53.

    Article  CAS  Google Scholar 

  • Jiang, X., Luo, Y., Yan, R., & Tay, J. H. (2009a). Impact of substrates acclimation strategy on simultaneous biodegradation of hydrogen sulfide and ammonia. Bioresource Technol., 100, 5707–5713.

    Article  CAS  Google Scholar 

  • Jiang, X., Yan, R., & Tay, J. H. (2009b). Transient-state biodegradation behavior of a horizontal biotrickling filter in co-treating gaseous H2S and NH3. Applied Microbiology and Biotechnology, 81, 969–975.

    Article  CAS  Google Scholar 

  • Jiang, X., Yan, R., & Tay, J. H. (2009c). Simultaneous autotrophic biodegradation of H2S and NH3 in a biotrickling filter. Chemosphere, 75, 1350–1355.

    Article  CAS  Google Scholar 

  • Jones, K. D., Martinez, A., Maroo, K., Deshpande, S., & Boswell, J. (2004). Kinetic evaluation of H2S and NH3 biofiltration for two media used for wastewater lift station emissions. J. Air Waste Manage., 54, 24–35.

    Article  CAS  Google Scholar 

  • Jubany, I., Carrera, J., Lafuente, J., & Baeza, J. A. (2008). Start-up of a nitrification system with automatic control to treat highly concentrated ammonium wastewater: experimental results and modelling. Chemical Engineering Journal, 144, 407–419.

    Article  CAS  Google Scholar 

  • Juhler, S., Revsbech, N. P., Schramm, A., Herrmann, M., Ottosen, L. D. M., & Nielsen, L. P. (2009). Distribution and rate of microbial processes in an ammonia-loaded air filter biofilm. Applied and Environmental Microbiology, 75, 3705–3713.

    Article  CAS  Google Scholar 

  • Kennes, C., & Thalasso, F. (1998). Waste gas biotreatment technology. J. Chem. Technol. Biot., 72, 303–319.

    Article  CAS  Google Scholar 

  • Kim, J. H., Rene, E. R., & Park, H. S. (2007). Performance of an immobilized cell biofilter for ammonia removal from contaminated air stream. Chemosphere, 68, 274–280.

    Article  CAS  Google Scholar 

  • Lafita, C., Penya-roja, J.-M., Sempere, F., Waalkens, A., Gabaldón, C. (2011). Two case studies of hydrogen sulfide and odor removal in municipal wastewater treatment plants. In: Proceedings of the 4th International Conference on Biotechniques for Air Pollution Control, A Coruña, pp. 467–474.

  • Lee, E. Y., Cho, K. S., Han, H. D., & Ryu, H. W. (2002). Hydrogen sulfide effects on ammonia removal by a biofilter seeded with earthworm casts. Journal of Environmental Quality, 31, 1782–1788.

    Article  CAS  Google Scholar 

  • Lomans, B. P., van der Drift, C., Pol, A., & Op den Camp, H. J. M. (2002). Microbial cycling of volatile organic sulfur compounds. Cellular and Molecular Life Sciences, 59, 575–588.

    Article  CAS  Google Scholar 

  • Malhautier, L., Gracian, C., Roux, J. C., Fanlo, J. L., & Le Cloirec, P. (2003). Biological treatment process of air loaded with an ammonia and hydrogen sulfide mixture. Chemosphere, 50, 145–153.

    Article  CAS  Google Scholar 

  • Montebello, A., Baeza, M., Lafuente, J., & Gabriel, D. (2010). Monitoring and performance of a desulphurizing biotrickling filter with an integrated continuous gas/liquid flow analyser. Chemical Engineering Journal, 165, 500–507.

    Article  CAS  Google Scholar 

  • Paca, J., Klapkova, E., Halecky, M., Jones, K., & Soccol, C. R. (2007). Performance evaluation of a biotrickling filter degrading mixtures of hydrophobic and hydrophilic compounds. Clean Technol. Envir., 9, 69–74.

    Article  CAS  Google Scholar 

  • Pfenning, N., Widdel, F., & Trüper, H. G. (1981). In M. P. Starr, H. Stolp, H. G. Trüper, A. Balows, & H. G. Schlegel (Eds.), The prokaryotes (pp. 926–940). New York: Springer.

    Google Scholar 

  • Prado, Ó. J., Veiga, M. C., & Kennes, C. (2005). Treatment of gas-phase methanol in conventional biofilters packed with lava rock. Water Research, 39, 2385–2393.

    Article  CAS  Google Scholar 

  • Prado, Ó. J., Gabriel, D., & Lafuente, J. (2009). Economical assessment of the design, construction and operation of open-bed biofilters for waste gas treatment. Journal of Environmental Management, 90, 2515–2523.

    Article  CAS  Google Scholar 

  • Ramírez, M., Gómez, J. M., Aroca, G., & Cantero, D. (2009). Removal of hydrogen sulfide by immobilized Thiobacillus thioparus in a biotrickling filter packed with polyurethane foam. Bioresource Technol., 100, 4989–4995.

    Article  Google Scholar 

  • Rittman, B. E., & McCarty, P. L. (2003). Environmental biotechnology: principles and applications. In B. E. Rittman & P. L. McCarty (Eds.), Stoichiometry and bacterial energetics (pp. 287–314). New York: McGraw-Hill.

    Google Scholar 

  • Sakuma, T., Jinsiriwanit, S., Hattori, T., & Deshusses, M. A. (2008). Removal of ammonia from contaminated air in biotrickling filter-denitrifying bioreactor combination system. Water Research, 42, 4507–4513.

    Article  CAS  Google Scholar 

  • Sempere, F., Martinez-Soria, V., Penya-roja, J.-M., Izquierdo, M., Palau, J., & Gabaldón, C. (2010). Comparison between laboratory and pilot biotrickling filtration of air emissions from painting and wood finishing. J. Chem. Technol. Biot., 85, 364–370.

    Article  CAS  Google Scholar 

  • Sercu, B., Van Langenhove, H., Nuñez, D., Aroca, G., & Verstraete, W. (2005). Operational and microbiological aspects of a bioaugmented two-stage biotrickling filter removing hydrogen sulfide and dimethyl sulfide. Biotechnology and Bioengineering, 90, 259–269.

    Article  CAS  Google Scholar 

  • Wan, S., Li, G., An, T., Guo, B., Sun, L., Zu, L., & Ren, A. (2010). Biodegradation of ethanethiol in aqueous medium by a new Lysinibacillus sphaericus strain RG-1 isolated from activated sludge. Biodegradation, 21, 1057–1066.

    Article  CAS  Google Scholar 

  • Webster, T. S., Devinny, J. S., Torres, E. M., & Basrai, S. S. (1997). Microbial ecosystems in compost and granular activated carbon biofilters. Biotechnology and Bioengineering, 53, 296–303.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The Spanish government (MEC) provided financial support through the project CICYT CTM2009-14338-C03-01. This study was partially funded by the company Ros Roca S.A. (Barcelona, Spain). The Department of Chemical Engineering at UAB (Universitat Autònoma de Barcelona) is a unit of Biochemical Engineering of the Xarxa de Referència en Biotecnologia de Catalunya (XRB), Generalitat de Catalunya.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Gabriel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hernández, J., Lafuente, J., Prado, Ó.J. et al. Simultaneous Removal of H2S, NH3, and Ethyl Mercaptan in Biotrickling Filters Packed with Poplar Wood and Polyurethane Foam: Impact of pH During Startup and Crossed Effects Evaluation. Water Air Soil Pollut 223, 3485–3497 (2012). https://doi.org/10.1007/s11270-012-1126-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-012-1126-4

Keywords

Navigation