Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Separation and Determination of Three Phenolic Xenoestrogens in Industrial Wastewater by Micellar Electrokinetic Chromatography on Polydimethylsiloxane Microchip

  • 219 Accesses

  • 4 Citations


The separation on microchip provides the advantages including high efficiency, increased throughput, reduced quantities of hazardous materials, cost saving, relatively facile instrumentation, improved portability, etc. A technique of micellar electrokinetic chromatography (MEKC) coupled with amperometric detection has been actualized on a polydimethylsiloxane microchip for the rapid separation and determination of three phenolic xenoestrogens as octylphenol (OP), 4-nonylphenol (4-NP), and bisphenol A (BPA). The baseline separation of these phenolic xenoestrogens is successfully obtained within 55 s under the optimized MEKC conditions with borate running buffer of pH 8.0 containing sodium dodecyl sulfate and β-cyclodextrin. The linear range for OP, 4-NP, and BPA are 20–1,000, 15–1,000, and 20–1,000 μg/L with the detection limit of 5.0, 4.0, and 3.0 μg/L, respectively. The present method is successfully applied for the determination of these phenolic xenoestrogens in some industrial wastewater samples from mainland of China with the recoveries ranged from 90.2 to 109.4 %.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. Barcelo, D., & Hennion, M. C. (1995). On-line sample handling strategies for the trace-level determination of pesticides and their degradation products in environmental waters. Analytica Chimica Acta, 318(1), 1–41.

  2. Bo, T., Zhong, L., Li, M., Luo, Y. Q., Li, K. A., Liu, H. W., & Guo, D. A. (2002). Separation of isoquinoline alkaloids and saponins by microemulsion electrokinetic chromatography with anionic and cationic surfactants. Chromatography, 56(11–12), 709–716.

  3. Cai, Y. Q., Jiang, G. B., & Zhou, Q. X. (2004a). Separation and determination of bisphenol A, 4-n-nonylphenol and 4-tert-octylphenol by micellar electrokinetic chromatography. Chinese Journal of Analytical Chemistry, 32(9), 1179–1181.

  4. Cai, Y. Q., Jiang, G. B., Liu, J. F., Liang, X., Yao, Z. W., Liu, J. M., Liu, J. Y., & Zhou, Q. X. (2004b). Solid-phase microextraction coupled with high performance liquid chromatography-fluorimetric detection for the determination of bisphenol A, 4-n-nonylphenol, and 4-tert-octylphenol in environmental water samples. Analytical Letters, 37(4), 739–753.

  5. EU (2000). EU Directive 2000/60/EC, establishing a framework for community action in the field of water policy.

  6. EU (2011). EU Directive 2011/8/EU (Amending Directive 2002/72/EC) as regards the restriction of use of bisphenol A in plastic infant feeding bottles.

  7. Ferrer, E., Santoni, E., Vittori, S., Font, G., Manes, J., & Sagratini, G. (2011). Simultaneous determination of bisphenol A, octylphenol, and nonylphenol by pressurised liquid extraction and liquid chromatography-tandem mass spectrometry in powdered milk and infant formulas. Food Chemistry, 126(1), 360–367.

  8. Garcia, C. D., Dressen, B. M., Henderson, A., & Henry, C. S. (2005). Comparison of surfactants for dynamic surface modification of poly(dimethylsiloxane) microchips. Electrophoresis, 26(3), 703–709.

  9. Gronen, S., Denslow, N., Manning, S., Barnes, S., Barnes, D., & Brouwer, M. (1999). Serum vitellogenin levels and reproductive impairment of male Japanese Medaka (Oryzias latipes) exposed to 4-tert-octylphenol. Environmental Health Perspectives, 107, 385–390.

  10. Han, D. M., Fang, G. Z., & Yan, X. P. (2005). Preparation and evaluation of a molecularly imprinted sol–gel material for on-line solid-phase extraction coupled with high performance liquid chromatography for the determination of trace pentachlorophenol in water samples. Journal of Chromatography. A, 1100(2), 131–136.

  11. Harazono, A., & Ema, M. (2001). Effects of 4-tert-octylphenol on initiation and maintenance of pregnancy following oral administration during early pregnancy in rats. Toxicology Letters, 119(1), 79–84.

  12. Jin, X. L., Huang, G. L., Jiang, G. B., Zhou, Q. F., & Liu, J. F. (2004). Simultaneous determination of 4-tert-octylphenol, 4-nonylphenol and bisphenol A in Guanting Reservoir using gas chromatography-mass spectrometry with selected ion monitoring. Journal of Environmental Sciences (China), 16(5), 825–828.

  13. Jobling, S., & Sumpter, J. P. (1993). Detergent components in sewage effluent are weakly oestrogenic to fish: an in vitro study using rainbow trout (Oncorhynchus mykiss) hepatocytes. Aquatic Toxicology, 27(3–4), 361–372.

  14. Jobling, S., Sheahan, D., Osborne, J. A., Matthiessen, P., & Sumpter, J. P. (1996). Inhibition of testicular growth in rainbow trout (Oncorhynchus mykiss) exposed to estrogenic alkylphenolic chemicals. Environmental Toxicology and Chemistry, 15(2), 194–202.

  15. Koeber, R., Fleischer, C., Lanza, F., Boos, K. S., Sellergren, B., & Barcelo, D. (2001). Evaluation of a multidimensional solid-phase extraction platform for highly selective on-line cleanup and high-throughput LC-MS analysis of triazines in river water samples using molecularly imprinted polymers. Analytical Chemistry, 73(11), 2437–2444.

  16. Li, W., Seifert, M., Xu, Y., & Hock, B. (2004). Comparative study of estrogenic potencies of estradiol, tamoxifen, bisphenol-A and resveratrol with two in vitro bioassays. Environment International, 30(3), 329–335.

  17. Li, T. T., Jia, Q., Song, L. H., Su, R. Y., Lei, Y., Zhou, W. H., & Li, H. F. (2009). Coupling poly-(methacrylic acid-co-ethylene glycol dimethacrylate) monolith microextraction to capillary electrophoresis for the determination of phenols in water samples. Talanta, 78(4–5), 1497–1502.

  18. Ma, Q., Bai, H., Wang, C., Zhang, Q., Zhou, X., Dong, H., & Wang, B. L. (2010). Simultaneous determination of n’onylphenol, octylphenol and bisphenol A in textiles and food packaging materials by liquid chromatography tandem mass spectrometry. Chinese Journal of Analytical Chemistry, 38(2), 197–201.

  19. Markey, C. M., Luque, E. H., De Toro, M. M., Sonnenschein, C., & Soto, A. M. (2001). In utero exposure to bisphenol a alters the development and tissue organization of the mouse mammary gland. Biological Reproductivity, 65(4), 1215–1223.

  20. McDonald, J. C., & Whitesides, G. M. (2002). Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Accounts of Chemical Research, 35(7), 491–499.

  21. Morrissey, R. E., George, J. D., Price, C. J., Tyl, R. W., Marr, M. C., & Kimmel, C. A. (1987). The developmental toxicity of bisphenol A in rats and mice. Fundamental and Applied Toxicology, 8(4), 571–582.

  22. Oleschuk, R. D., Shultz-Lockyear, L. L., Ning, Y. B., & Harrison, D. J. (2000). Trapping of bead-based reagents within microfluidic systems: On-chip solid-phase extraction and electrochromatography. Analytical Chemistry, 72(3), 585–590.

  23. OSPAR (2007). OSPAR convention for the protection of the marine environment of the North-East Atlantic. OSPAR list of chemicals for priority action.

  24. Park, S. Y., & Choi, J. (2009). Genotoxic effects of nonylphenol and bisphenol A exposure in aquatic biomonitoring species: Freshwater crustacean, daphnia magna, and aquatic midge, Chironomus riparius. Bulletin of Environmental Contamination and Toxicology, 83(4), 463–468.

  25. Qian, X. M., Zhang, Q. L., Zhang, Y., & Tu, Y. F. (2010). Separation/determination of flavonoids and ascorbic acid in rat serum and excrement by capillary electrophoresis with electrochemical detection. Analytical Sciences, 26(5), 557–560.

  26. Roman, G. T., Hlaus, T., Bass, K. J., Seekhammer, T. G., & Culbertson, C. T. (2005). Sol–gel modified poly(dimethylsiloxane) microfluidic devices with high electroosmotic mobilities and hydrophilic channel wall characteristics. Analytical Chemistry, 77(5), 1414–1422.

  27. Santana, C. M., Ferrera, Z. S., Padrón, M. E. T., & Rodríguez, J. J. S. (2009). Methodologies for the extraction of phenolic compounds from environmental samples: New approaches. Molecules, 14, 298–320.

  28. Slentz, B. E., Penner, N. A., & Regnier, F. E. (2002). Capillary electrochromatography of peptides on microfabricated poly(dimethylsiloxane) chips modified by cerium(IV)-catalyzed polymerization. Journal of Chromatography. A, 948(1–2), 225–233.

  29. Sun, L., Chen, L. G., Sun, X., Du, X. B., Yue, Y. S., He, D. Q., Xu, H. Y., Zeng, Q. L., Wang, H., & Ding, L. (2009). Analysis of sulfonamides in environmental water samples based on magnetic mixed hemimicelles solid-phase extraction coupled with HPLC-UV detection. Chemosphere, 77(10), 1306–1312.

  30. Takeda, S., Lida, S., Chayama, K., Tsuji, H., Fukushi, K., & Wakida, S. (2000). Separation of bisphenol A and three alkylphenols by micellar electrokinetic chromatography. Journal of Chromatography. A, 895(1–2), 213–218.

  31. Timms, B. G., Howdeshell, K. L., Barton, L., Bradley, S., Richter, C. A., & Vom Saal, F. S. (2005). Estrogenic chemicals in plastic and oral contraceptives disrupt development of the fetal mouse prostate and urethra. Proceedings of the National Academy of Sciences of the United States of America, 102(19), 7014–7019.

  32. Tokuyama, T., Fujii, S., Sato, K., Abo, M., & Okubo, A. (2005). Microbioassay system for antiallergic drug screening using suspension cells retaining in a poly(dimethylsiloxane) microfluidic device. Analytical Chemistry, 77(10), 3309–3314.

  33. Tong, C. L., Guo, Y., & Liu, W. P. (2010). Simultaneous determination of five nitroaniline and dinitroaniline isomers in wastewaters by solid-phase extraction and high-performance liquid chromatography with ultraviolet detection. Chemosphere, 81(3), 430–435.

  34. Volkel, W., Colnot, T., Csanady, G. A., Filser, J. G., & Dekant, W. (2002). Metabolism and kinetics of bisphenol A in humans at low doses following oral administration. Chemical Research in Toxicology, 15(10), 1281–1287.

  35. Wakida, S., Fujimoto, K., Nagai, H., Miyado, T., Shibutani, Y., & Takeda, S. (2006). On-chip micellar electrokinetic chromatographic separation of phenolic chemicals in waters. Journal of Chromatography. A, 1109(2), 179–182.

  36. Wang, A. J., Xu, J. J., Zhang, Q., & Chen, H. Y. (2006). The use of poly(dimethylsiloxane) surface modification with gold nanoparticles for the microchip electrophoresis. Talanta, 69(1), 210–215.

  37. White, R., Jobling, S., Hoare, S. A., Sumpter, J. P., & Parker, M. G. (1994). Environmentally persistent alkylphenolic compounds are estrogenic. Endocrinology, 135(1), 175.

  38. Xiao, J., Shao, B., Wu, X. Y., Sun, X. J., & Wu, Y. N. (2011). A study on bisphenol A, nonylphenol, and octylphenol in human urine amples detected by SPE-UPLC-MS. Biomedical and Environmental Sciences, 24(1), 40–46.

Download references


This work is supported by the National Natural Science Foundation of China (no. 20675055, 21175096), Priority Academic Program Development of Jiangsu Higher Education Institutions, Ph.D. Programs Foundation of Ministry of Education of China (20093201110004), Natural Science Foundation of Jiangsu Province (BK2009111), and Project of Science and Technology of Suzhou (SYJG0901).

Author information

Correspondence to Yifeng Tu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yang, H., Zhang, Q., Zhao, J. et al. Separation and Determination of Three Phenolic Xenoestrogens in Industrial Wastewater by Micellar Electrokinetic Chromatography on Polydimethylsiloxane Microchip. Water Air Soil Pollut 223, 3461–3469 (2012). https://doi.org/10.1007/s11270-012-1124-6

Download citation


  • Polydimethylsiloxane microchip
  • Micellar electrokinetic chromatography
  • Amperometric detection
  • Phenolic environmental estrogen
  • Industrial wastewater