Water, Air, & Soil Pollution

, Volume 223, Issue 6, pp 3437–3444 | Cite as

Evaluation of the Influence of Multiple Environmental Factors on the Biodegradation of Dibenzofuran, Phenanthrene, and Pyrene by a Bacterial Consortium Using an Orthogonal Experimental Design

  • Raquel Simarro
  • Natalia González
  • L. Fernando Bautista
  • M. Carmen Molina
  • Emanuele Schiavi
Article

Abstract

For a bioremediation process to be effective, we suggest to perform preliminary studies in laboratory to describe and characterize physicochemical and biological parameters (type and concentration of nutrients, type and number of microorganisms, temperature) of the environment concerned. We consider that these studies should be done by taking into account the simultaneous interaction between different factors. By knowing the response capacity to pollutants, it is possible to select and modify the right treatment conditions to enhance bioremediation.

Keywords

PAH degradation Orthogonal Microbial consortium Optimization 

Notes

Acknowledgments

This work has been funded by the Spanish Ministry of Environment (1.1-373/2005/3-B and 01/2006/2-1.1) and by Fundación Alfonso Martín Escudero. The consortium C2PL05 was isolated from soil samples kindly provided by Repsol S.A. This work is framed within the Official Máster en Ciencia y Tecnología Ambiental of the Universidad Rey Juan Carlos.

The authors have declared no conflict of interest.

References

  1. Bautista, L. F., Sanz, R., Molina, M. C., González, N., & Sánchez, D. (2009). Effect of different non-ionic surfactants on the biodegradation of PAH by diverse aerobic bacteria. International Biodeterioration and Biodegradation, 63, 913–922.CrossRefGoogle Scholar
  2. Boochan, S., Britz, M. L., & Stanley, G. A. (1998). Surfactant-enhanced biodegradation of high molecular weight polycyclic aromatic hydrocarbons by Stenotrophomonas maltophila. Biotechnology and Bioengineering, 59, 482–494.CrossRefGoogle Scholar
  3. Chen, S.-H., & Aitken, M. D. (1999). Salicylate stimulates the degradation of high-molecular weight polycyclic aromatic hydrocarbons by Pseudomonas saccharophila P15. Environmental Science and Technology, 33, 435–439.CrossRefGoogle Scholar
  4. Chen, J., Wong, M. H., & Tam, N. (2008). Multi-factors on biodegradation kinetics of polycyclic aromatic hydrocarbons (PAHs) by Sphingomonas sp., a bacterial strain isolated from mangrove sediment. Marine Pollution Bulletin, 57, 695–702.CrossRefGoogle Scholar
  5. Eriksson, M., Ka, J.-O., & Mohn, W. W. (2001). Effects of low temperature and freeze–thaw cycles on hydrocarbon biodegradation in Artic Tundra soil. Applied and Environmental Microbiology, 67, 5107–5112.CrossRefGoogle Scholar
  6. González, N., Simarro, R., Molina, M. C., Bautista, L. F., Delgado, L., & Villa, J. A. (2011). Effect of surfactants on PAH biodegradation by a bacterial consortium and on the dynamics of the bacterial community during the process. Bioresource Technology, 102, 9438–9446.CrossRefGoogle Scholar
  7. Heitkamp, M. A., & Cerniglia, C. E. (1988). Mineralization of polycyclic aromatic hydrocarbons by a bacterium isolated from sediment below an oil field. Applied and Environmental Microbiology, 54, 1612–1614.Google Scholar
  8. Jin, D., Jiang, X., Jing, X., & Ou, Z. (2007). Effects of concentration, head group and structure of surfactants on the biodegradation of phenanthrene. Journal of Hazardous Materials, 144, 215–221.CrossRefGoogle Scholar
  9. Kim, H. S., & Weber, W. J. (2003). Preferential surfactant utilization by a PAH-degrading strain: effects on micellar solubilization phenomena. Environmental Science and Technology, 37, 3574–3580.CrossRefGoogle Scholar
  10. Laha, S., & Luthy, R. G. (1992). Effect of non-ionic surfactants on the solubilization and mineralization of phenanthrene in soil–water systems. Biotechnology and Bioengineering, 40, 1367–1380.CrossRefGoogle Scholar
  11. Lee, K., Park, J.-W., & Ahm, I.-S. (2003). Effect of additional carbon source on naphthalene biodegradation by Pseudomonas putida G7. Journal of Hazardous Materials, 105, 157–167.CrossRefGoogle Scholar
  12. Leys, M. N., Bastiaens, L., Verstraete, W., & Springael, D. (2004). Influence of the carbon/nitrogen/phosphorus ratio on polycyclic aromatic hydrocarbons degradation by Mycobacterium and Sphingomonas in soil. Applied Microbiology and Biotechnology, 66, 726–736.CrossRefGoogle Scholar
  13. Lloyd, J., & Taylor, J. A. (1994). On the temperature dependence of soil respiration. Functional Ecology, 8, 315–323.CrossRefGoogle Scholar
  14. Maier, M. R. (2009). Bacterial growth. In M. R. Maier, L. I. Pepper, & P. C. Gerba (Eds.), Environmental microbiology (pp. 37–54). New York: Academic Press.CrossRefGoogle Scholar
  15. Mohn, W., & Stewart, R. G. (2000). Limiting factors for hydrocarbon biodegradation at low temperatures in Artic soils. Soil Biology and Biochemistry, 32, 1161–1172.CrossRefGoogle Scholar
  16. Molina, M. C., González, N., Bautista, L. F., Sanz, R., Simarro, R., Sánchez, I., & Sanz, J. L. (2009). Isolation and genetic identification of PAH degrading bacteria from a microbial consortium. Biodegradation, 20, 789–800.CrossRefGoogle Scholar
  17. Mulligan, C. N., Young, R. N., & Gibbs, B. F. (2001). Surfactant enhanced remediation of contaminated soil: a review. Engineering Geology, 60, 371–380.CrossRefGoogle Scholar
  18. Muyzer, G., Hottenträger, S., Teske, A., & Wawer, C. (1995). Denaturing gradient gel electrophoresis of PCR-amplified 16S rDNA—a new molecular approach to analyse the genetic diversity of mixed microbial communities. In: A.D.L. Akkermans, J.D. van Elsas, and F.J. de Bruijn (Eds.), Molecular microbial ecology manual (pp. 3.4.4.1–3.4.4.22). Dordrecht, The Netherlands: Kluwer.Google Scholar
  19. Pantsyrnaya, T., Blanchard, F., Delaunay, S., Georgen, J. L., Géudon, E., Guseva, E., & Boudrant, J. (2011). Effect of surfactants, dispersion and temperature on solubility and biodegradation of phenanthrene in aqueous media. Chemosphere, 83, 29–33.CrossRefGoogle Scholar
  20. Santos, E. C., Jacques, J. S., Bento, M. F., Peralba, M. C. R., Selbach, A. P., Sá, L. S., & Camargo, A. O. F. (2008). Anthracene biodegradation and surface activity by an iron-stimulated Pseudomonas sp. Bioresource Technology, 99, 2644–2649.CrossRefGoogle Scholar
  21. Sartoros, C., Yerushalmi, L., Berón, L., & Guiot, S. (2005). Effects of surfactant and temperature on biotransformation kinetics of anthracene and pyrene. Chemistry, 61, 1042–1050.CrossRefGoogle Scholar
  22. Schlessinger, W. H. (1991). Biogeochemistry. San Diego: Academic Press.Google Scholar
  23. Simarro, R., González, N., Bautista, L. F., Sanz, R., & Molina, M. C. (2010). Optimization of key abiotic factors of PAH (naphthalene, phenanthrene and anthracene) biodegradation process by a bacterial consortium. Water, Air, and Soil Pollution, 217, 365–374.CrossRefGoogle Scholar
  24. Sudipt, K. S., Om, V. S., & Rakesh, K. J. (2002). Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation. Trends in Biotechnology, 20, 243–248.CrossRefGoogle Scholar
  25. Szabó, K. E., Itor, P. O. B., Bertilsson, S., Tranvik, L., & Eiler, A. (2007). Importance of rare and abundant populations for the structure and functional potential of freshwater bacterial communities. Aquatic Microbiology and Ecology, 47, 1–10.CrossRefGoogle Scholar
  26. Thibault, S. L., Anderson, M., & Frankenberger, W. T., Jr. (1996). Influence of surfactant on pyrene desorption and degradation in soils. Applied and Environmental Microbiology, 62, 283–287.Google Scholar
  27. Viñas, M., Sabaté, J., Espuny, M. J., & Solanas, A. M. (2005). Bacterial community dynamics and polycyclic aromatic hydrocarbon degradation during bioremediation of heavily creosote-contaminated soil. Applied and Environmental Microbiology, 71, 7008–7018.CrossRefGoogle Scholar
  28. Wong, J. W. C., Lai, K. M., Wan, C. K., & Ma, K. K. (2000). Isolation and optimization of PAHs-degradative bacteria from contaminated soil for PAHs bioremediation. Water, Air, and Soil Pollution, 139, 1–13.CrossRefGoogle Scholar
  29. Wrenn, B. A., & Venosa, A. D. (1983). Selective enumeration of aromatic and aliphatic hydrocarbon degrading bacteria by a most probable number procedure. Canadian Journal of Microbiology, 42, 252–258.CrossRefGoogle Scholar
  30. Yuan, S. Y., Wei, S. H., & Chang, B. V. (2000). Biodegradation of polycyclic aromatic hydrocarbons by a mixed culture. Chemosphere, 41, 1463–1468.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Raquel Simarro
    • 1
  • Natalia González
    • 1
  • L. Fernando Bautista
    • 2
  • M. Carmen Molina
    • 1
  • Emanuele Schiavi
    • 3
  1. 1.Department of Biology and Geology, ESCETUniversidad Rey Juan CarlosMadridSpain
  2. 2.Department of Chemical and Environmental Technology, ESCETUniversidad Rey Juan CarlosMadridSpain
  3. 3.Department of Applied Mathematics, ESCETUniversidad Rey Juan CarlosMadridSpain

Personalised recommendations