Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Plasma B-esterase and Glutathione S-transferase Activities in the South American Reptiles Caiman latirostris (Crocodylia, Alligatoridae) and Phrynops hilarii (Testudines, Chelidae)

  • 177 Accesses

  • 1 Citations

Abstract

We determined normal plasma butyrylcholinesterase (BChE), carboxylesterase (CbE using α-NA substrate), and glutathione S-transferase (GST) activities in Caiman latirostris and Phrynops hilarii to obtain reference values for organophosphorus (OP) pesticide monitoring. BChE and CbE sensitivity to malaoxon was also evaluated. C. latirostris (N = 12; six males and six females) and P. hilarii (N = 12; seven males and five females) were obtained from the programs Yacaré (Entre Ríos Province, Argentina) and Zoo of Córdoba (Córdoba Province, Argentina). Mean total (female and male) plasma BChE activity was significantly different between reptile species, ranging between 0.337 ± 0.085 μmol min−1 ml−1 of plasma for C. latirostris and 0.251 ± 0.070 μmol min−1 ml−1 of plasma for P. hilarii. However, plasma CbE (α-NA) and GST activities were significantly higher in P. hilarii (4.81 ± 1.00 and 0.145 ± 0.045 μmol min−1 ml−1 of plasma, respectively) than in C. latirostris (0.57 ± 0.20 and 0.059 ± 0.013 μmol min−1 ml−1 of plasma, respectively). No significant differences in B-esterase and GST activities were detected between sexes, except CbE (α-NA) for C. latirostris. IC50 values for BChE and CbE (α-NA) suggested different sensitivity levels between species and between sexes. The results demonstrate that plasma esterase activity varied between species, but not between sexes (except CbE for C. latirostris). The in vitro inhibition tests indicated that CbE (α-NA) is more sensitive to inhibition than BChE. C. latirostris may be the reptile species most vulnerable to field pesticide exposure because this reptile presents the lowest CbE activity levels and its B-esterase levels seem more sensitive to OP.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Abhilash, P. C., & Singh, N. (2009). Pesticide use and application: an Indian scenario. Journal of Hazardous Materials, 165, 1–12.

  2. Alcalde, L., Derocco, N. N., & Rosset, D. (2010). Feeding in syntopy: diet of Hydromedusa tectifera and Phrynops hilarii (Chelidae). Chelonian Conservation and Biology, 9, 33–44.

  3. Aldridge, W. N. (1953). Serum esterases (1) two types of esterases (A and B) hydrolyzing p-nitrophenyl acetate, propionate and butyrate, and a method for their determination. Biochemical Journal, 52, 110–117.

  4. Attademo, A. M., Peltzer, P. M., Lajmanovich, R. C., Cabagna, M., & Fiorenza, G. (2007). Plasma B-esterases and glutathione S-transferase activities in the toad Chaunus schneideri (Amphibia, Anura) inhabiting rice agroecosystems of Argentina. Ecotoxicology, 16, 533–539.

  5. Attademo, A. M., Cabagna Zenklusen, M., Lajmanovich, R. C., Peltzer, P. M., Junges, C., & Bassó, A. (2011). B-esterase activities and blood cell morphology in the frog Leptodactylus chaquensis (Amphibia: Leptodactylidae) on rice agroecosystems from Santa Fe Province (Argentina). Ecotoxicology, 20, 274–282.

  6. Bain, D., Buttemer, W. A., Astheimer, L., Fildes, K., & Hooper, M. J. (2004). Effects of sublethal fenitrothion ingestion on cholinesterase inhibition, standard metabolism, thermal preference, and prey capture ability in the Australian central bearded dragon (Pogona vitticeps: Agamidae). Environmental Toxicology and Chemistry, 23, 109–116.

  7. Bartkowiak, D. J., & Wilson, B. W. (1995). Avian plasma carboxylesterase activity as a potential biomarker of organophosphate pesticide exposure. Environmental Toxicology and Chemistry, 14, 2149–2153.

  8. Bassó, A., Attademo, A. M., Lajmanovich, R., Peltzer, P. M., Junges, C., Cabagna, M. C., et al. (2012). Plasma esterases in the tegu lizard Tupinambis merianae (Reptilia, Teiidae): impact of developmental stage, sex and organophosphorus in vitro exposure. Environmental Science and Pollution Research, 19, 214–225.

  9. Borteiro, C. (2005). Abundancia, estructura poblacional y dieta de yacarés (Caiman latirostris: Crocodylia, Alligatoridae) en ambientes antrópicos del Departamento Artigas, Uruguay. Tesis de Maestría. Facultad de Ciencias, Universidad de la República, Uruguay

  10. Borteiro, C., Gutierrez, F., Tedros, M., & Kolenc, F. (2009). Food habits of the broad-snouted caiman (Caiman latirostris: Crocodylia, Alligatoridae) in northwestern Uruguay. Studies on Neotropical Fauna and Environment, 44, 31–36.

  11. Bunyan, P. J., & Jennings, D. M. (1968). Organophosphorus poisoning; some properties of avian esterase. Journal of Agricultural and Food Chemistry, 16, 326–331.

  12. Cabrera, M. R. (1998). Las tortugas continentales de Sudamérica Austral. Argentina: Buenos Aires.

  13. CASAFE, (2005). Cámara de sanidad agropecuaria y fertilizantes de la República Argentina. Guía de productos fitosanitarios para la República Argentina, Buenos Aires.

  14. Chambers, J. E., & Levi, P. E. (1992). Organophosphates: chemistry, fate and effects. San Diego: Academic.

  15. Chuiko, G. M., Podgornaya, V. A., & Zhelnin, Y. Y. (2003). Acetylcholinesterase and butyrylcholinesterase activities in brain and plasma of freshwater teleosts: cross-species and cross-family differences. Comparative Biochemistry and Physiology, 135, 55–61.

  16. DeCaprio, A. P. (1997). Biomarkers: coming of age for environmental health and risk assessment. Environmental Science and Technology, 31, 1837–1848.

  17. De Solla, S. R., Bishop, C. A., Van der Kraak, G., & Brooks, R. J. (1998). Impact of organochlorine contamination on levels of sex hormones and external morphology of common snapping turtles (Chelydra serpentina serpentina) in Ontario, Canada. Environmental Health Perspective, 106, 253–260.

  18. Ellman, G. L., Courtney, K. D., Andreas, V., Jr., & Featherstone, R. M. (1971). A new and rapid calorimetric determination of cholinesterase activity. Biochemical Pharmacology, 7, 88–95.

  19. Geiger, F., Bengtssonb, J., Berendse, F., Weisser, W. W., Emmersond, M., & Morales, M. B. (2010). Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic and Applied Ecology, 11, 97–105.

  20. Gomori, G. (1953). Human esterases. The Journal of Laboratory and Clinical Medicine, 142, 445–53.

  21. Greulich, K., & Pflugmacher, S. (2004). Uptake and effects on detoxification enzymes of cypermethrin in embryos and tadpoles of amphibians. Archives of Environmental Contamination and Toxicology, 47, 489–495.

  22. Gunderson, M. P., Oberdorster, E., & Guillette, L. J. (2004). Phase I and II liver enzyme activities in juvenile alligators (Alligator mississippiensis) collected from three sites in the Kissimmee–Everglades drainage, Florida (USA). Comparative Biochemistry and Physiology, 139, 39–46.

  23. Habdous, M., Visvikis, S., & Visvikis, S. (2002). Rapid spectrophotometric method for serum glutathione S-transferases activity. Clinical Chemistry Acta, 326, 131–142.

  24. Habig, W. H., Pabst, M. J., & Jakoby, W. (1974). Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. Journal of Biological Chemistry, 249, 7130–7139.

  25. Hermes-Lima, M., & Storey, K. B. (1993). Role of antioxidants in the tolerance of freezing and anoxia by garter snakes. American Journal of Physiology, 265, 646–652.

  26. Hopkins, W. A. (2006). Use of tissue residues in reptile ecotoxicology: a call for integration and experimentalism. In: S. Gardner, & E. Oberdorster, (Eds.), New perspectives: toxicology and the environment, volume 3: reptile toxicology (pp. 35–62). London: Taylor and Francis.

  27. Laguerre, C., Sánchez-Hernández, J. C., Köhler, H. R., Triebskorn, R., Capowiez, Y., Rault, M., et al. (2009). B-type esterases in the snail Xeropicta derbentina: an enzymological analysis to evaluate their use as biomarkers of pesticide exposure. Environmental Pollution, 157, 199–207.

  28. Lajmanovich, R. C., Sánchez-Hernández, J. C., Peltzer, P. M., Attademo, A. M., Fiorenza, G. S., Cabagna, M. C., et al. (2008). Levels of plasma B-esterases and glutathione-S-transferase activities in three South American toad species. Toxicological and Environmental Chemistry, 90, 1145–1161.

  29. Lajmanovich, R. C., Attademo, A. M., Peltzer, P. M., Junges, C. M., & Cabagna, M. C. (2011). Toxicity of four glyphosate formulations on Rhinella arenarum (Anura: Bufonidae) tadpoles: B-esterases and glutathione S-transferase inhibitions. Archives of Environmental Contamination and Toxicology, 60, 681–689.

  30. Lam, V. M. S. (1977). Pseudo-cholinesterase of snake sera. Comparative Biochemistry and Physiology, 58, 129–131.

  31. Lavilla, E. O., Richard, E., & Scrocchi, G. (2000). Categorización de los anfibios y reptiles de la Republica Argentina. San Miguel de Tucumán: Asociación Herpetológica Argentina.

  32. Martínez-Alvarez, R. M., Morales, A. E., & Sanz, A. (2005). Antioxidant defenses in fish: biotic and abiotic factors. Reviews in Fish Biology and Fisheries, 15, 75–88.

  33. Molina, F. B., Rocha, M. B., & Lula, L. A. B. M. (1998). Comportamento alimentar e dieta de Phrynops hilarii (Dumeril & Bibron) em cativeiro (Reptilia, Testudines Chelidae). Revista Brasileira de Zoologia I, 15, 73–79.

  34. Mortensen, S. R., Brimijoin, S., Hooper, M. J., & Padilla, S. (1998). Comparison of the in vitro sensitivity of rat acetylcholinesterase to chlorpyrifos-oxon: what do tissue IC50 values represent? Toxicology and Applied Pharmacology, 148, 46–49.

  35. Motulsky, H. J., & Christopoulos, A. (2003). Fitting models to biological data using linear and nonlinear regression. A practical guide to curve fitting. San Diego: GraphPad Software.

  36. Nagle, R. D., Rowe, C. L., & Congdon, J. D. (2001). Accumulation and selective maternal transfer of contaminants in the turtle Trachemys scripta associated with coal ash deposition. Archives of Environmental Contamination and Toxicology, 40, 531–536.

  37. Ognjanović, B. I., Pavlović, Z., Maletić, S. D., Zikić, R. V., Stajn, A. S., Radojičić, R. M., et al. (2003). Protective influence of vitamin E on antioxidant defense system in the blood of rats treated with cadmium. Physiological Research, 52, 563–570.

  38. Oliveira, M. M., Silva Filho, V. V., Cunha Bastos, V. L. F., Fernandes, F. C., & Cunha Bastos, J. (2007). Brain acetylcholinesterase as a marine pesticide biomarker using Brazilian fishes. Marine Environmental Research, 63, 303–312.

  39. Pitol, D. L., Issa, J. P. M., Caetano, F. H., & Lunardi, L. O. (2008). Radioautographic study of the seasonal distribution of leukocytes in turtles Phrynops hilarii (Chelonia Chelidae). Micron, 1228, 1–6.

  40. Poletta, G. L., Larriera, A., Kleinsorge, E., & Mud, M. D. (2008). Caiman latirostris (broad-snouted caiman) as a sentinel organism for genotoxic monitoring: basal values determination of micronucleus and comet assay. Mutation Research, 650, 202–209.

  41. Poletta, G. L., Kleinsorge, E., Paonessa, A., Mudry, M. D., Larriera, A., & Siroski, P. A. (2011). Genetic, enzymatic and developmental alterations observed in Caiman latirostris exposed in ovo to pesticide formulations and mixtures in an experiment simulating environmental exposure. Ecotoxicology Environmental Safety, 74, 852–859.

  42. Rey, F., Ramos, J. G., Stoker, C., Bussmann, L. E., Luque, E. H., & Muñoz-de-Toro, M. (2006). Vitellogenin detection in caiman latirostris (Crocodylia: Alligatoridae): a tool to assess environmental estrogen exposure in wildlife. Journal of Comparative Physiology, 176, 243–251.

  43. Richardson, K. L., Gold-Bouchot, G., & Schlenk, D. (2009). The characterization of cytosolic glutathione transferase from four species of sea turtles: loggerhead (Caretta caretta), green (Chelonia mydas), olive ridley (Lepidochelys olivacea), and hawksbill (Eretmochelys imbricata). Comparative Biochemistry and Physiology, 150, 279–284.

  44. Rie, M. T., Lendas, K. A., Woodin, B. R., Stegeman, J. J., & Callard, I. P. (2000). Hepatic biotransformation enzymes in a sentinel species, the painted turtle (Chrysemys picta), from Cape Cod, Massachusetts: seasonal-, sex- and location related differences. Biomarkers, 5, 382–394.

  45. Sánchez, J. C., Fossi, M. C., & Focardi, S. (1997). Serum B-esterases as a nondestructive biomarker for monitoring the exposure of reptiles to organophosphorus insecticides. Ecotoxicology and Environmental Safety, 38, 45–52.

  46. Sánchez-Hernández, J. C. (2003). Evaluating reptile exposure to cholinesterase-inhibiting agrochemicals by serum butyrylcholinesterase activity. Environmental Toxicology and Chemistry, 22, 296–301.

  47. Sánchez-Hernández, J. C. (2006). Ecotoxicological perspectives of B-esterases in the assessment of pesticide contamination. In R. H. Plattenberg (Ed.), Environmental pollution, new research. New York: Nova Science.

  48. Sánchez-Hernández, J. C., Carbonell, R., Henríquez Pérez, A., Montealegre, M., & Gómez, L. (2004). Inhibition of plasma butyrylcholinesterase activity in the lizard Gallotia galloti palmae by pesticides: a field study. Environmental Pollution, 132, 479–488.

  49. Schmidt, S. R. (2003). Reptile cholinesterase characterization and use in monitoring anti-cholinesterases. A thesis in Environmental Toxicology. Graduate Faculty of Texas Tech University

  50. Sogorb, M. A., & Vilanova, E. (2002). Enzymes involved in the detoxification of organophosphorus, carbamate and pyrethroid insecticides through hydrolysis. Toxicology Letters, 128(1–3), 215–228.

  51. Stoker, C., Rey, F., Rodriguez, H., Ramos, J. G., Sirosky, P., Larriera, A., et al. (2003). Sex reversal effects on Caiman latirostris exposed to environmentally relevant doses of the xenoestrogen bisphenol A. General and Comparative Endocrinology, 133, 287–296.

  52. Thompson, H. M., Mackness, M. I., Walker, C. H., & Hardy, A. R. (1991). Species differences in avian serum B esterases revealed by chromatofocusing and possible relationships of esterase activity to pesticide toxicity. Biochemical Pharmacology, 41, 1235–1240.

  53. Verdade, L. M. (1998). Caiman latirostris. In J. P. Ross (Ed.), Crocodiles: status survey and conservation action plan (pp.18–20). Gland, Switzerland: IUCN—The World Conservation Union.

  54. Vernadakis, A., & Routledge, C. O. (1973). Effects of ether and phenobarbital anaesthesia on the activities of brain acetylcholinesterase and butyrylcholinesterase in young adult rats. Journal of Neurochemistry, 20, 1503–1504.

  55. Wheelock, C. E., Phillips, B. M., Anderson, B. S., Miller, J. L., Miller, M. J., & Hammock, B. D. (2008). Applications of carboxylesterase activity in environmental monitoring and toxicity identification evaluations (TIEs). Reviews of Environmental Contamination and Toxicology, 195, 117–178.

Download references

Acknowledgments

We thank Dr. Don Sparling for critical reading of the manuscript and for helping with the English language. We also thank Yolanda Querchi (Director of the Programa Yacarés of Entre Ríos) and Zoo of Córdoba, especially Biologist Daniel Villarreal, who gave us permission to collect blood samples from P. hilarii individuals. We thank the members of the Department of Mathematics, Faculty of Biochemistry and Biological Sciences, UNL for their statistical suggestions. Research was conducted under permits provided by Dirección Provincial de Recursos Naturales and Dirección Provincial de Flora y Fauna (Entre Ríos Province, Argentina) and Agencia Córdoba Ambiente (Córdoba Province, Argentina).

Author information

Correspondence to Andrés M. Attademo.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Attademo, A.M., Lajmanovich, R.C., Peltzer, P.M. et al. Plasma B-esterase and Glutathione S-transferase Activities in the South American Reptiles Caiman latirostris (Crocodylia, Alligatoridae) and Phrynops hilarii (Testudines, Chelidae). Water Air Soil Pollut 223, 3321–3331 (2012). https://doi.org/10.1007/s11270-012-1112-x

Download citation

Keywords

  • B-esterases
  • Glutathione S-transferase
  • Malaoxon
  • Caiman latirostris
  • Phrynops hilarii