Water, Air, & Soil Pollution

, Volume 223, Issue 6, pp 3145–3154 | Cite as

Seasonal Monitoring of Hydrocarbon Degraders in Alabama Marine Ecosystems Following the Deepwater Horizon Oil Spill

  • Agota Horel
  • Behzad Mortazavi
  • Patricia A. Sobecky
Article

Abstract

Following the Deepwater Horizon explosion and crude oil contamination of a marsh ecosystem in AL in June 2010, hydrocarbon-degrader microbial abundances of aerobic alkane, total hydrocarbon, and polycyclic aromatic hydrocarbon (PAH) degraders were enumerated seasonally. Surface sediment samples were collected in October and December of 2010 and in April and July of 2011 along 40–70-m transects from the high tide to the intertidal zone including Spartina alterniflora-vegetated marsh, seagrass (Ruppia maritima)-dominated sediments, and nonvegetated sediments. Alkane and total hydrocarbon degraders in the sediment were detected, while PAH degraders were below detection limit at all locations examined during the sampling periods. The highest counts for microbial alkane degraders were observed at the high tide line in April and averaged to 8.65 × 105 of cells/g dry weight (dw) sediment. The abundance of alkane degraders during other months ranged from 9.49 × 103 to 3.87 × 104, while for total hydrocarbon degraders, it ranged between 5.62 × 103 and 1.14 × 105 of cells/g dw sediment. Pore water nutrient concentrations (NH4+, NO3, NO2, and PO43−) showed seasonal changes with minimum values observed in December and April and maximum values in October and July. Concentrations of total petroleum hydrocarbons in sediments averaged 100.4 ± 52.4 and 141.9 ± 57.5 mg/kg in January and July, 2011, respectively. The presence of aerobic microbial communities during all seasons in these nearshore ecosystems suggests that an active and resident microbial community is capable of mineralizing a fraction of petroleum hydrocarbons.

Keywords

Deepwater Horizon Crude oil Hydrocarbon degraders Macondo well Biodegradation Salt marsh 

Supplementary material

11270_2012_1097_MOESM1_ESM.pdf (121 kb)
Esm. 1(PDF 120 kb)

References

  1. Alexander, M. (1999). Biodegradation and bioremediation (2nd ed.). San Diego: Academic.Google Scholar
  2. Atlas, R. M. (1995a). Bioremediation of petroleum pollutants. International Biodeterioration & Biodegradation, 35(1–3), 317–327.CrossRefGoogle Scholar
  3. Atlas, R. M. (1995b). Petroleum biodegradation and oil spill bioremediation. Marine Pollution Bulletin, 31(4–12), 178–182.CrossRefGoogle Scholar
  4. Atlas, R. M., & Bartha, R. (1998). Microbial interactions with xenobiotic and inorganic pollutants. Microbial Ecology Fundamentals and Applications (4th ed.). Menlo Park: Benjamin/Cummings Science Publishing.Google Scholar
  5. Azwell, T., Blum, M. J., Hare, A., Joye, S., Kubendran, S., Laleian, A., et al. (2011). The Macondo blowout environmental report. Deepwater Horizon Study Group (pp. 1-9). Berkley, CA.Google Scholar
  6. Boufadel, M. C., Reeser, P., Suidan, M. T., Wrenn, B. A., Cheng, J., Du, X., et al. (1999). Optimal nitrate concentration for the biodegradation of n-heptadecane in a variably-saturated sand column. Environmental Technology, 20, 191–199.CrossRefGoogle Scholar
  7. Braddock, J. F., Ruth, M. L., Catterall, P. H., Walworth, J. L., & McCarthy, K. A. (1997). Enhancement and inhibition of microbial activity in hydrocarbon-contaminated Arctic soils: implications for nutrient-amended bioremediation. Environmental Science & Technology, 31(7), 2078–2084.CrossRefGoogle Scholar
  8. Brown, E. J., & Braddock, J. F. (1990). Sheen screen, a miniaturized most-probable-number method for enumeration of oil-degrading microorganisms. Applied and Environmental Microbiology, 56(12), 3895–3896.Google Scholar
  9. Burke, D. J., Hamerlynck, E. P., & Hahn, D. (2003). Interactions between the salt marsh grass Spartina patens, arbuscular mycorrhizal fungi and sediment bacteria during the growing season. Soil Biology & Biochemistry, 35, 501–511.CrossRefGoogle Scholar
  10. Crone, T. J., & Tolstoy, M. (2010). Magnitude of the 2010 Gulf of Mexico oil leak. Science, 330(6004), 634–634.CrossRefGoogle Scholar
  11. Daane, L. L., Harjono, I., Zylstra, G. J., & Haggblom, M. M. (2001). Isolation and characterization of polycyclic aromatic hydrocarbon-degrading bacteria associated with the rhizosphere of salt marsh plants. Applied and Environmental Microbiology, 67(6), 2683–2691.CrossRefGoogle Scholar
  12. de Man, J. C. (1983). MPN tables, corrected. European Journal of Applied Microbiology and Biotechnology, 17, 301–305.CrossRefGoogle Scholar
  13. DeFlaun, M., & Mayer, L. (1983). Relationships between bacteria and grain surfaces in intertidal sediments. American Society of Limnology and Oceanography, 28(5), 873–881.CrossRefGoogle Scholar
  14. Elmendorf, D. L., Haith, C. E., Douglas, G. S., & Prince, R. C. (1994). Relative rates of biodegradation of substituted polycyclic aromatic hydrocarbons. In R. E. Hinchee, A. Leeson, L. Semprini, & S. K. Ong (Eds.), Bioremediation of chlorinated and polycyclic aromatic hydrocarbon compounds. Boca Raton: Lewis Publishers.Google Scholar
  15. Enock, J. (2002). Intrinsic biodegradation potential of crude oil in salt marshes. Louisiana State University and Agricultural and Mechanical CollegeGoogle Scholar
  16. Haines, J. R., Wrenn, B. A., Holder, E. L., Strohmeier, K. L., Herrington, R. T., & Venosa, A. D. (1996). Measurement of hydrocarbon-degrading microbial populations by a 96-well plate most-probable-number procedure. Journal of Industrial Microbiology and Biotechnology, 16(1), 36–41.Google Scholar
  17. Hazen, T. C., Dubinsky, E. A., DeSantis, T. Z., Andersen, G. L., Piceno, Y. M., Singh, N., et al. (2010). Deep-see oil plume enriches indigenous oil-degrading bacteria. Science, 330(6001), 204–208.CrossRefGoogle Scholar
  18. Hood, M. A., Bishop, W. S., Meyers, S. P., & Whelan, T., III. (1975). Microbial indicators of oil-rich salt marsh sediments. Applied Microbiology, 30(6), 982–987.Google Scholar
  19. Horel, A., & Schiewer, S. (2009). Investigation of the physical and chemical parameters affecting biodegradation of diesel and synthetic diesel fuel contaminating Alaskan soils. Cold Regions Science and Technology, 58(3), 113–119.CrossRefGoogle Scholar
  20. Horel, A., & Schiewer, S. (2011). Influence of constant and fluctuating temperature on biodegradation rates of fish biodiesel blends contaminating Alaskan sand. Chemosphere, 83(5), 652–660.CrossRefGoogle Scholar
  21. Jackson, A. W., & Pardue, J. H. (1998). Potential for enhancement of biodegradation of crude oil in Louisiana salt marshes using nutrient amendments. Water, Air, and Soil Pollution, 104(1–4), 343–355.Google Scholar
  22. Kostka, J. E., Prakash, O., Overholt, W. A., Green, J. S., Freyer, G., Canion, A., et al. (2011). Hydrocarbon-degrading bacteria and the bacterial community response in Gulf of Mexico beach sands impacted by the Deepwater Horizon oil spill. Applied and Environmental Microbiology, 77(22), 7962–7974.CrossRefGoogle Scholar
  23. LaRiviere, D. J., Autenrieth, R. L., & Bonner, J. S. (2003). Redox dynamics during recovery of an oil-impacted estuarine wetland. Water Research, 37, 3307–3318.CrossRefGoogle Scholar
  24. Launen, L. A., Dutta, J., Turpeinen, R., Eastep, M. E., Dorn, R., Buggs, V. H., et al. (2008). Characterization of the indigenous PAH-degrading bacteria of Spartina dominated salt marshes in the New York/New Jersey Harbor. Biodegradation, 19, 347–363.CrossRefGoogle Scholar
  25. Leahy, J. G., & Colwell, R. R. (1990). Microbial-degradation of hydrocarbons in the environment. Microbiological Reviews, 54(3), 305–315.Google Scholar
  26. Lin, Q., & Mendelssohn, I. A. (1998). The combined effects of phytoremediation and biostimulation in enhancing habitat restoration and oil degradation of petroleum contaminated wetlands. Ecological Engineering, 10, 263–274.CrossRefGoogle Scholar
  27. MacDonald, I. R., Leifer, I., Sassen, R., Stine, P., Mitchell, R., & Guinasso, N., Jr. (2002). Transfer of hydrocarbons from natural seeps to the water column and atmosphere. Geofluids, 2, 95–107.CrossRefGoogle Scholar
  28. Maier, R. M., & Pepper, I. L. (2009). Earth environments. In R. M. Maier, I. L. Pepper, & C. P. Gerba (Eds.), Environmental microbiology (2nd ed., pp. 57–82). Burlington: Elsevier.CrossRefGoogle Scholar
  29. Mearns, A. J., Venosa, A. D., Lee, K., & Salazar, M. (1997). Field-testing bioremediation treating agents: lessons from an experimental shoreline oil spill. Paper presented at the International Oil Spill Conference, Fort Lauderdale, Florida.Google Scholar
  30. Mills, M. A., Bonner, J. S., McDonald, T. J., Page, C. A., & Autenrieth, R. L. (2003). Intrinsic bioremediation of petroleum-impacted wetland. Marine Pollution Bulletin, 46, 887–899.CrossRefGoogle Scholar
  31. Morris, J. T. (2006). Competition among marsh macrophytes by means of geomorphological displacement in the intertidal zone. Estuarine and Coastal Shelf Science, 69, 395–402.CrossRefGoogle Scholar
  32. Phillips, L. A. (2008). The relationship between plants and their root-associated microbial communities in hydrocarbon phytoremediation. Dissertation, University of Saskatchewan, Saskatoon.Google Scholar
  33. Porter, K. G., & Feig, Y. S. (1980). The use of DAPI for identifying and counting aquatic microflora. Limnology and Oceanography, 25(5), 943–948.CrossRefGoogle Scholar
  34. Saadoun, I. M. K., & Al-Ghzawi, Z. D. (2005). Bioremediation of petroleum contamination (Bioremediation of Aquatic and Terrestial Ecosystems): Science Publishers Inc.Google Scholar
  35. Stephens, D. B. (2000). Vadoze zone hydrology. Boca Raton: CRC Press, Inc.Google Scholar
  36. Stout, J. (1984). The ecology of irregularly flooded salt marshes of the northeastern Gulf of Mexico: a community profile (U. S. D. o. t. Interior, Trans.). Biological Report (Vol. 85, pp. 1-115): Fish and Wildife ServiceGoogle Scholar
  37. Walworth, J., & Ferguson, S. (2008). Nutrient requirements for bioremediation. In D. Filler, I. Snape, & D. L. Barnes (Eds.), Bioremediation of petroleum hydrocarbons in cold regions: Cambridge University Press.Google Scholar
  38. Wrenn, B. A., & Venosa, A. D. (1996). Selective enumeration of aromatic and aliphatic hydrocarbon degrading bacteria by a most-probable-number procedure. Canadian Journal of Microbiology, 42(3), 252–258.CrossRefGoogle Scholar
  39. Wright, A. L., Weaver, R. W., & Webb, J. W. (1996). Oil bioremediation in salt marsh mesocosms as infuenced by N and P fertilization, flooding, and season. Water, Air, and Soil Pollution, 95(1–4), 179–191.Google Scholar
  40. Zhu, X., Venosa, A. D., Suidan, M. T., & Lee, K. (2004). Guidelines for the bioremediation of oil-contaminated salt marshes (pp. 1–66). Cincinnati: Environmental Protection Agency.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Agota Horel
    • 1
    • 2
  • Behzad Mortazavi
    • 1
    • 2
  • Patricia A. Sobecky
    • 1
  1. 1.Department of Biological SciencesUniversity of AlabamaTuscaloosaUSA
  2. 2.Dauphin Island Sea LabDauphin IslandUSA

Personalised recommendations