Water, Air, & Soil Pollution

, Volume 223, Issue 6, pp 3077–3083 | Cite as

Influence of Land Use and Nutrient Flux on Metabolic Activity of E. coli O157 in River Water

  • A. P. Williams
  • R. S. Quilliam
  • C. E. Thorn
  • D. Cooper
  • B. Reynolds
  • D. L. Jones


Infections caused by waterborne Escherichia coli O157 continue to pose a public health risk. An increase in faecal coliform loading of watercourses due to expanding populations, intensification of agriculture and climate change are predicted to amplify these risks. Understanding the effect of land use on the ecology of E. coli O157 in environmental waters is therefore important for implementing effective mitigation measures. In order to test the hypothesis that activity of waterborne E. coli O157 is affected by both land use type and the respective autochthonous microbial communities, we inoculated replicate microcosms of water collected from areas of contrasting land uses within a catchment with a chromosomally lux-marked E. coli O157. Pathogen metabolic activity and its ability to reactivate following addition of nutrients were quantified over time in both filter-sterilised and non-sterile microcosms. Metabolic activity differed significantly according to the land use type, the degree of competition from background microbes and the availability of nutrients. These results indicate that land use types associated with particular areas of a watercourse should be considered a central factor in models that aim to predict pathogen risk in environmental waters.


Animal waste Microbial pollution Quantitative microbial risk assessment (QMRA) Sewage Verocytotoxigenic E. coli (VTEC) Water Framework Directive 



This work was jointly funded by the Knowledge Economy Skills Scholarship programme and the Rural Economy & Land Use programme (RES-229-25-0012). We also thank David Norris for assistance with graphics.


  1. Allan, D. J. (2004). Landscapes and riverscapes: The influence of land use on stream ecosystems. Annual Review of Ecology, Evolution, and Systematics, 35, 257–284.CrossRefGoogle Scholar
  2. Avery, L. M., Williams, A. P., Killham, K., & Jones, D. L. (2008). Survival of Escherichia coli O157:H7 in waters from lakes, rivers, puddles and animal drinking troughs. Science of the Total Environment, 389, 378–385.CrossRefGoogle Scholar
  3. CEH. (2011). Conwy Catchment Observatory, Centre for Ecology and Hydrology. Accessed 10 Oct 2011.
  4. Crowther, J., Wyer, M. D., Bradford, M., Kay, D., Francis, C. A., & Knisel, W. G. (2003). Modelling faecal indicator concentrations in large rural catchments using land use and topographic data. Journal of Applied Microbiology, 94, 962–973.CrossRefGoogle Scholar
  5. Hale, T. L., & Bonventre, P. F. (1979). Shigella infection of Henle intestinal epithelial cells: Role of the bacterium. Infection and Immunity, 24, 879–886.Google Scholar
  6. Hampson, D., Crowther, J., Bateman, I., Kay, D., Posen, P., Stapleton, C., et al. (2010). Predicting microbial pollution concentrations in UK rivers in response to land use change. Water Research, 44, 4748–4759. Special Issue: SI.CrossRefGoogle Scholar
  7. He, L. M. L., & He, Z. L. (2008). Water quality prediction of marine recreational beaches receiving watershed baseflow and stormwater runoff in southern California, USA. Water Research, 42, 2563–2573.CrossRefGoogle Scholar
  8. Jones, D. L. (1999). Potential health risks associated with the persistence of Escherichia coli O157 in agricultural environments. Soil Use and Management, 15, 76–83.CrossRefGoogle Scholar
  9. Jones, P. D., & Reid, P. A. (2001). Assessing future changes in extreme precipitation over Britain using regional climate model integrations. International Journal of Climatology, 21, 1337–1356.CrossRefGoogle Scholar
  10. Kay, D., Crowther, J., Stapleton, C. M., Wyer, M. D., Fewtrell, L., Anthony, C., et al. (2008). Faecal indicator organism concentrations and catchment export coefficients in the UK. Water Research, 42, 2649–2661.CrossRefGoogle Scholar
  11. Kay, D., Anthony, S., Crowther, J., Chambers, B. J., Nicholson, F. A., Chadwick, D., et al. (2009). Microbial water pollution: A screening tool for initial catchment-scale assessment & source apportionment. Science of the Total Environment, 408, 5649–5656.CrossRefGoogle Scholar
  12. Kistemann, T., Claßen, T., Koch, C., Dagendorf, F., Fischeder, R., Gebel, J., et al. (2002). Microbial load of drinking water reservoir tributaries during extreme rainfall and runoff. Applied and Environmental Microbiology, 68, 2188–2197.CrossRefGoogle Scholar
  13. Klein, D. A., & Casida, L. E., Jr. (1967). Escherichia coli die-out from normal soil as related to nutrient availability and the indigenous microflora. Canadian Journal of Microbiology, 13, 1461–1470.CrossRefGoogle Scholar
  14. Ledger, D. C. (1981). The velocity of the River Tweed and its tributaries. Freshwater Biology, 11, 1–10.CrossRefGoogle Scholar
  15. Oliver, D. M., Heathwaite, A. L., Fish, R. D., Chadwick, D. R., Hodgson, C. J., Winter, M., et al. (2009). Scale appropriate modelling of diffuse microbial pollution from agriculture. Progress in Physical Geography, 33, 358–377.CrossRefGoogle Scholar
  16. Pickup, R. W., Rhodes, G., & Hermon-Taylor, J. (2003). Monitoring bacterial pathogens in the environment. Current Opinion in Biotechnology, 14, 319–325.CrossRefGoogle Scholar
  17. Quilliam, R. S., Williams, A. P., Avery, L. M., Malham, S. K., & Jones, D. L. (2011a). Unearthing human pathogens at the agricultural-environment interface: A review of current methods for the detection of Escherichia coli O157 in freshwater ecosystems. Agriculture, Ecosystems & Environment, 140, 354–360.CrossRefGoogle Scholar
  18. Quilliam, R. S., Clements, K., Duce, C., Cottrill, S. B., Malham, S. K., & Jones, D. L. (2011b). Spatial variation of waterborne Escherichia coli—implications for routine sampling of water quality. Journal of Water and Health, 9, 734–737.Google Scholar
  19. Ritchie, J. M., Campbell, J., Shepherd, J., Beaton, Y., Jones, D., Killham, K., et al. (2003). A stable bioluminescent construct of Escherichia coli O157:H7 for hazard assessments of long-term survival in the environment. Applied and Environmental Microbiology, 69, 3359–3367.CrossRefGoogle Scholar
  20. Shanahan, P., Borchardt, D., Henze, M., Rauch, W., Reichert, P., Somlyódy, L., et al. (2001). River water quality model: I. Modelling approach. Water Science and Technology, 43, 1–9.Google Scholar
  21. Strachan, N. J. C., Dunn, G. M., Locking, M. E., Reid, T. M. S., & Ogden, I. D. (2006). Escherichia coli O157: Burger bug or environmental pathogen? International Journal of Food Microbiology, 112, 129–137.CrossRefGoogle Scholar
  22. Thorn, C. E., Quilliam, R. S., Williams, A. P., Malham, S. K., Cooper, D., Reynolds, B., et al. (2011). Grazing intensity is a poor indicator of waterborne Escherichia coli O157 activity. Anaerobe, 17, 330–333.CrossRefGoogle Scholar
  23. Williams, A. P., Avery, L. M., Killham, K., & Jones, D. L. (2007). Persistence, dissipation, and activity of Escherichia coli O157:H7 within sand and seawater environments. FEMS Microbiology Ecology, 60, 24–32.CrossRefGoogle Scholar
  24. Williams, A. P., McGregor, K. A., Killham, K., & Jones, D. L. (2008). Persistence and metabolic activity of Escherichia coli O157:H7 in farm animal faeces. FEMS Microbiology Letters, 287, 168–173.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • A. P. Williams
    • 1
  • R. S. Quilliam
    • 1
  • C. E. Thorn
    • 1
  • D. Cooper
    • 2
  • B. Reynolds
    • 2
  • D. L. Jones
    • 1
  1. 1.School of Environment, Natural Resources & Geography, College of Natural Sciences, Environment Centre WalesBangor UniversityBangorUK
  2. 2.Centre for Ecology & HydrologyEnvironment Centre WalesBangorUK

Personalised recommendations