Water, Air, & Soil Pollution

, Volume 223, Issue 5, pp 2695–2705 | Cite as

Use of Biosolids for Phytocapping of Landfill Soil

  • Dane T. LambEmail author
  • Stephen Heading
  • Nanthi Bolan
  • Ravi Naidu


Conventional clay capping for post-closure management of landfill commonly cracks and deteriorates over time. As a consequence, water ingress into waste increases as a function of time, potentially causing a range of environmental issues. An alternative approach is known as phytocapping, which utilizes select plant species to control cap stability and moisture percolation. In this study, growth of Arundo donax L. (giant reed), Brassica juncea (L.) Czern. (Indian mustard), and Helianthus annuus L. (sunflower) on a landfill site was studied with different biosolid amendment rates (0, 25, and 50 Mg ha−1). Cultivation of the landfill cap and amendment with biosolids significantly improved the characteristics of the soil. Growth of each plant species increased due to biosolid addition. Giant reed produced the largest biomass in the 50 Mg ha−1 biosolid amendment rate (38 Mg ha−1 dry weight). The high pH and clay content of landfill cap soil, and the low metal concentrations of the biosolid resulted in low heavy metal (copper, zinc, cadmium, and lead) accumulation in leaves of most treatments. The improvement in growth and limited uptake of metal contaminants to plant shoots indicated that biosolid application to landfill clay caps improves the application of phytocapping of old landfill sites.


Landfill Organic matter Clay liner Heavy metals Arundo donax Giant reed 



The authors would like to acknowledge the contribution of Kwon-Rae Kim of the National Academy of Agricultural Science, Republic of Korea for his contribution towards the establishment of the experimental plots. Financial support from the Cooperative Research Center for Contamination Assessment and Remediation of the Environment (CRC CARE) is gratefully acknowledged.


  1. Abichou, T., Powelson, D., Aitchson, E., Benson, C., & Albright, W. (2005). Water balances in vegetated lysimeters at a Georgia landfill. Journal of Soil and Crop Science Society, 64, 1–8.Google Scholar
  2. Albright, W., Benson, C., Gee, G., Abichou, T., Roesler, A., & Rock, S. (2003). Examining the alternatives. Civil Engineering, 73, 70–75 (PNWD-SA-6048).Google Scholar
  3. Albright, W., Benson, C., Gee, G., Roesler, A., Abichou, T., Apiwantragoon, P., et al. (2004). Field water balance of landfill final covers. Journal of Environmental Quality, 33(6), 2317–2332.CrossRefGoogle Scholar
  4. Albright, W., Benson, C., Gee, G., Abichou, T., Tyler, S., & Rock, S. (2006). Field performance of three compacted clay landfill covers. Vadose Zone Journal, 5(4), 1157.CrossRefGoogle Scholar
  5. Amacher, M., Henderson, R., Breithaupt, M., Seale, C., & LaBauve, J. (1990). Unbuffered and buffered salt methods for exchangeable cations and effective cation-exchange capacity. Soil Science Society of America Journal, 54(4), 1036–1042.CrossRefGoogle Scholar
  6. Angelini, L. G., Ceccarini, L., & Bonari, E. (2005). Biomass yield and energy balance of giant reed (Arundo donax L.) cropped in central Italy as related to different management practices. European Journal of Agronomy, 22(4), 375–389.CrossRefGoogle Scholar
  7. Ashwath, N., & Venkatraman, K. (2010). Phytocapping: An alternative technique for landfill remediation. International Journal of Environment and Waste Management, 6(1), 51–70.Google Scholar
  8. Blaylock, M. J., David, E., Dushenkov, S., Zakharova, O., Gussman, C., Kapulnik, Y., et al. (1997). Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environmental Science & Technology, 31(3), 860–865.CrossRefGoogle Scholar
  9. Bogner, J., & Spokas, K. (1993). Landfill CH<sub>4</sub>: Rates, fates, and role in global carbon cycle. Chemosphere, 26(1–4), 369–386.CrossRefGoogle Scholar
  10. Bogner, J., Spokas, K., & Burton, E. (1997). Kinetics of methane oxidation in a landfill cover soil: Temporal variations, a whole-landfill oxidation experiment, and modeling of Net CH<sub>4</sub> emissions. Environmental Science & Technology, 31(9), 2504–2514. doi: 10.1021/es960909a.CrossRefGoogle Scholar
  11. Bogner, J., Chanton, J., Blake, D., Abichou, T., & Powelson, D. (2010). Effectiveness of a Florida landfill biocover for reduction of CH<sub>4</sub> and NMHC emissions. Environmental Science & Technology, 44(4), 1197–1203. doi: 10.1021/es901796k.CrossRefGoogle Scholar
  12. Börjesson, G., Sundh, I., & Svensson, B. (2004). Microbial oxidation of CH<sub>4</sub> at different temperatures in landfill cover soils. FEMS Microbiology Ecology, 48(3), 305–312. doi: 10.1016/j.femsec.2004.02.006.CrossRefGoogle Scholar
  13. Burton, E. D., Phillips, I. R., Hawker, D. W., & Lamb, D. T. (2005). Copper behaviour in a Podosol. 1. pH-dependent sorption-desorption, sorption isotherm analysis, and aqueous speciation modelling. Australian Journal of Soil Research, 43(4), 491–501. doi: 10.1071/sr04117.CrossRefGoogle Scholar
  14. Cabral, A. R., Moreira, J. F. V., & Jugnia, L. B. (2010). Biocover performance of landfill methane oxidation: Experimental results. Journal of Environmental Engineering, 136(8), 785–793. doi: 10.1061/(asce)ee.1943-7870.0000182.CrossRefGoogle Scholar
  15. Christou, M., Mardikis, M., & Alexopoulou, E. (2001). Research on the effect of irrigation and nitrogen upon growth and yields of Arundo donax L. in Greece. Aspects of Applied Biology, 65, 47–56.Google Scholar
  16. Dever, S., Swarbrick, G., & Stuetz, R. (2007). Passive drainage and biofiltration of landfill gas: Australian field trial. Waste Management, 27(2), 277–286.CrossRefGoogle Scholar
  17. Einola, J., Kettunen, R., & Rintala, J. (2007). Responses of methane oxidation to temperature and water content in cover soil of a boreal landfill. Soil Biology and Biochemistry, 39(5), 1156–1164. doi: 10.1016/j.soilbio.2006.12.022.CrossRefGoogle Scholar
  18. Einola, J., Sormunen, K., Lensu, A., Leiskallio, A., Ettala, M., & Rintala, J. (2009). Methane oxidation at a surface-sealed boreal landfill. Waste Management, 29(7), 2105–2120. doi: 10.1016/j.wasman.2009.01.007.CrossRefGoogle Scholar
  19. Ettala, M. O. (1988). Short-rotation tree plantations at sanitary landfills. Waste Management & Research, 6(3), 291–302.CrossRefGoogle Scholar
  20. Ettala, M. O., Yrjonen, K. M., & Rossi, E. J. (1988). Vegetation coverage at sanitary landfills in Finland. Waste Management & Research, 6(3), 281–289.CrossRefGoogle Scholar
  21. GHD. (2006). Report for Coleman Road Landfill Groundwater Monitoring Data Review October 2006. Nerang: GHD.Google Scholar
  22. Ghosh, P., Dayal, D., Mandal, K., Wanjari, R., & Hati, K. (2003). Optimization of fertilizer schedules in fallow and groundnut-based cropping systems and an assessment of system sustainability. Field Crops Research, 80(2), 83–98.CrossRefGoogle Scholar
  23. Gilman, E., Leone, I., & Flower, F. (1982). Influence of soil gas contamination on tree root growth. Plant and Soil, 65(1), 3–10.CrossRefGoogle Scholar
  24. Hilger, H., & Humer, M. (2003). Biotic landfill cover treatments for mitigating methane emissions. Environmental Monitoring and Assessment, 84(1–2), 71–84. doi: 10.1023/a:1022878830252.CrossRefGoogle Scholar
  25. Huber-Humer, M., Röder, S., & Lechner, P. (2009). Approaches to assess biocover performance on landfills. Waste Management, 29(7), 2092–2104. doi: 10.1016/j.wasman.2009.02.001.CrossRefGoogle Scholar
  26. Hutchings, T. R., Moffat, A. J., & Kemp, R. A. (2001). Effects of rooting and tree growth of selected woodland species on cap integrity in a mineral capped landfill site. Waste Management & Research, 19(3), 194–200.CrossRefGoogle Scholar
  27. Jackson, M. B. (1985). Ethylene and responses of plants to soil waterlogging and submergence. Annual Review of Plant Physiology, 36(1), 145–174.CrossRefGoogle Scholar
  28. Jarrell, W., & Virginia, R. (1990). Soil cation accumulation in a mesquite woodland: Sustained production and long-term estimates of water use and nitrogen fixation. Journal of Arid Environments, 18(1), 51–58.Google Scholar
  29. Kirkham, M. B., Redelfs, M. S., Stone, L. R., & Kanemasu, E. T. (1985). Comparison of water status and evapotranspiration of six row crops. Field Crops Research, 10, 257–268. doi: 10.1016/0378-4290(85)90032-2.CrossRefGoogle Scholar
  30. Korfiatis, G. P., & Demetracopoulos, A. C. (1986). Flow characteristics of landfill leachate collection systems and liners. Journal of Environmental Engineering, 112(3), 538–550.CrossRefGoogle Scholar
  31. Kos, B., Greman, H., & Lestan, D. (2003). Phytoextraction of lead, zinc and cadmium from soil by selected plants. Plant Soil and Environment, 49(12), 548–553.Google Scholar
  32. Krishnamurti, G. S. R., & Naidu, R. (2002). Solid-solution speciation and phytoavailability of copper and zinc in soils. Environmental Science & Technology, 36(12), 2645–2651.CrossRefGoogle Scholar
  33. Kumar, P. B. A. N., Dushenkov, V., Motto, H., & Raskin, I. (1995). Phytoextraction: The use of plants to remove heavy metals from soils. Environmental Science & Technology, 29(5), 1232–1238.CrossRefGoogle Scholar
  34. Lal, R. (2006). Enhancing crop yields in the developing countries through restoration of the soil organic carbon pool in agricultural lands. Land Degradation & Development, 17(2), 197–209.CrossRefGoogle Scholar
  35. Lamb, D., Ming, H., Megharaj, M., & Naidu, R. (2009). Heavy metal (Cu, Zn, Cd and Pb) partitioning and bioaccessibility in uncontaminated and long-term contaminated soils. Journal of Hazardous Materials, 171(1–3), 1150–1158. doi: 10.1016/j.jhazmat.2009.06.124.CrossRefGoogle Scholar
  36. Lamb, D., Venkatraman, K., Bolan, N., Ashwath, N., Choppala, G., & Naidu, R. (2011). Phytocapping: An alternative technology for the sustainable management of landfill sites. Critical Reviews in Environmental Science and Technology (in press).Google Scholar
  37. Lawlor, A. J., & Tipping, E. (2003). Metals in bulk deposition and surface waters at two upland locations in northern England. Environmental Pollution, 121(2), 153–167.CrossRefGoogle Scholar
  38. Lewandowski, I., Scurlock, J. M. O., Lindvall, E., & Christou, M. (2003). The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass and Bioenergy, 25(4), 335–361.CrossRefGoogle Scholar
  39. Madejon, P., Murillo, J., Maranon, T., Cabrera, F., & Soriano, M. (2003). Trace element and nutrient accumulation in sunflower plants two years after the Aznalcollar mine spill. The Science of the Total Environment, 307(1–3), 239–257.CrossRefGoogle Scholar
  40. Mandal, K., & Sinha, A. (2004). Nutrient management effects on light interception, photosynthesis, growth, dry matter production and yield of Indian mustard (Brassica juncea). Journal of Agronomy and Crop Science, 190(2), 119–129.CrossRefGoogle Scholar
  41. Maurice, C., Ettala, M., & Lagerkvist, A. (1999). Effects of leachate irrigation on landfill vegetation and subsequent methane emissions. Water, Air, and Soil Pollution, 113(1–4), 203–216. doi: 10.1023/a:1005069503677.CrossRefGoogle Scholar
  42. Mavrogianopoulos, G., Vogli, V., & Kyritsis, S. (2002). Use of wastewater as a nutrient solution in a closed gravel hydroponic culture of giant reed (Arundo donax). Bioresource Technology, 82(2), 103–107.CrossRefGoogle Scholar
  43. McBride, M. (2003). Toxic metals in sewage sludge-amended soils: Has promotion of beneficial use discounted the risks? Advances in Environmental Research, 8(1), 5–19.CrossRefGoogle Scholar
  44. Miller, W., & Miller, D. (1987). A micro pipette method for soil mechanical analysis. Communications in Soil and Plant Science, 18, 1–15.CrossRefGoogle Scholar
  45. Moffat, A. J., & Houston, T. J. (1991). Tree establishment and growth at Pitsea landfill site, Essex, U.K. Waste Management & Research, 9(1), 35–46. doi: 10.1016/0734-242X(91)90085-L.Google Scholar
  46. Murtaza, G., Haynes, R. J., Naidu, R., Belyaeva, O. N., Kim, K. R., Lamb, D. T., et al. (2011). Natural attenuation of Zn, Cu, Pb and Cd in three biosolids-amended soils of contrasting pH measured using rhizon pore water samplers. Water, Air, & Soil Pollution, 221, 351–363.CrossRefGoogle Scholar
  47. Naidu, R., & Bolan, N. S. (2008). Contaminant chemistry in soils: Key concepts and bioavailability. In R. Naidu (Ed.), Chemical bioavailability in terrestrial environment (pp. 9–38). Amsterdam: Elsevier.CrossRefGoogle Scholar
  48. NEPC. (1999). Schedule B(5) guideline on ecological risk assessment. Canberra: Australian Government.Google Scholar
  49. Nixon, D. J., Stephens, W., Tyrrel, S. F., & Brierley, E. D. R. (2001). The potential for short rotation energy forestry on restored landfill caps. Bioresource Technology, 77(3), 237–245. doi: 10.1016/S0960-8524(00)00081-X.CrossRefGoogle Scholar
  50. Park, J. H., Lamb, D., Paneerselvam, P., Choppala, G., Bolan, N., & Chung, J.-W. (2011). Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils. Journal of Hazardous Materials, 185(2–3), 549–574. doi: 10.1016/j.jhazmat.2010.09.082.CrossRefGoogle Scholar
  51. Rayment, G., & Higginson, F. (1992). Australian laboratory handbook of soil and water chemical methods. Port Melbourne: Inkata Press Pty Ltd.Google Scholar
  52. Rittmann, B. E., Fleming, I. R., & Rowe, R. K. (1996). Leachate chemistry: Its implications for clogging. ASCE, pp. 28–33Google Scholar
  53. Ryan, M. G., Bond, B. J., Law, B. E., Hubbard, R. M., Woodruff, D., Cienciala, E., et al. (2000). Transpiration and whole-tree conductance in ponderosa pine trees of different heights. Oecologia, 124(4), 553–560.CrossRefGoogle Scholar
  54. SA EPA. (2009). Environment Protection Authority. Annual Report. Adelaide: EPA S. Australia, Trans.Google Scholar
  55. Said-Pullicino, D., Massaccesi, L., Dixon, L., Bol, R., & Gigliotti, G. (2010). Organic matter dynamics in a compost-amended anthropogenic landfill capping-soil. European Journal of Soil Science, 61(1), 35–47.CrossRefGoogle Scholar
  56. Scheutz, C., & Kjeldsen, P. (2004). Environmental factors influencing attenuation of methane and hydrochlorofluorocarbons in landfill cover soils. Journal of Environmental Quality, 33(1), 72–79.CrossRefGoogle Scholar
  57. Scott, J., Beydoun, D., Amal, R., Low, G., & Cattle, J. (2005). Landfill management, leachate generation, and leach testing of solid wastes in Australia and overseas. Critical Reviews in Environmental Science and Technology, 35(3), 239–332.CrossRefGoogle Scholar
  58. Shankar, G., Verma, L. P., & Singh, R. (2002). Effect of integrated nutrient management on field and quality of Indian mustard (Brassica juncea) and properties of soil. Indian Journal of Agriculture Science, 72, 551–552.Google Scholar
  59. Shu, W., Ye, Z., Lan, C., Zhang, Z., & Wong, M. (2002). Lead, zinc and copper accumulation and tolerance in populations of Paspalum distichum and Cynodon dactylon. Environmental Pollution, 120(2), 445–453.CrossRefGoogle Scholar
  60. Stern, J. C., Chanton, J., Abichou, T., Powelson, D., Yuan, L., Escoriza, S., et al. (2007). Use of a biologically active cover to reduce landfill methane emissions and enhance methane oxidation. Waste Management, 27(9), 1248–1258. doi: 10.1016/j.wasman.2006.07.018.CrossRefGoogle Scholar
  61. Suarez, D. (1980). Relation between pHc and sodium adsorption ratio (SAR) and an alternative method of estimating SAR of soil or drainage waters1. Soil Science Society of America Journal, 45(3), 469.CrossRefGoogle Scholar
  62. Tsetimi, G. O., & Okieimen, F. E. (2011). Chelate-assisted phytoextraction of metals from chromated copper arsenate (CCA) contaminated soil. Journal of Environmental Chemistry and Ecotoxicology, 3(8), 214–224.Google Scholar
  63. US EPA (2010). Sewage sludge (biosolids) Accessed 26 Aug 2011.
  64. Venkatraman, K., & Ashwath, N. (2009). Phytocapping: Importance of tree selection and soil thickness. Water, Air, & Soil Pollution: Focus, 9(5), 421–430.CrossRefGoogle Scholar
  65. VicEPA. (2000). Environmental guidelines for reducing greenhouse gas emissions from landfills and wastewater treatment facilities. Victoria: EPA Victoria, Trans.Google Scholar
  66. Walia, M., & Goyal, S. (2010). Effect of heavy metal contaminated sewage sludge on soil microbiological properties and growth of Indian mustard. Archives of Agronomy and Soil Science, 56(5), 563–574.CrossRefGoogle Scholar
  67. Wample, R. L., & Reid, D. M. (1975). Effect of aeration on the flood-induced formation of adventitious roots and other changes in sunflower (Helianthus annuus L.). Planta, 127(3), 263–270.CrossRefGoogle Scholar
  68. Wang, D., Li, H., Wei, Z., Wang, X., & Hu, F. (2006). Effect of earthworms on the phytoremediation of zinc-polluted soil by ryegrass and Indian mustard. Biology and Fertility of Soils, 43(1), 120–123.CrossRefGoogle Scholar
  69. Waugh, W., Karstens, M., Sheader, L., Benson, C., Albright, W., & Mushovic, P. (2008). Monitoring the performance of an alternative landfill cover at the Monticello,Utah, uranium mill tailings disposal site. Paper presented at the Waste Management 2008 Conference, Phoenix, February 24–28 2008Google Scholar
  70. Xu, X., Rudolph, V., & Greenfield, P. F. (1999). Australian urban landfills: Management and economics. Waste Management & Research, 17, 171–180.CrossRefGoogle Scholar
  71. Yoon, J., Cao, X., Zhou, Q., & Ma, L. Q. (2006). Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. The Science of the Total Environment, 368(2–3), 456–464.Google Scholar
  72. Zar, G. (1999). Biostatistical analysis (4th ed.). London: Prentice-Hall.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Dane T. Lamb
    • 1
    • 2
    Email author
  • Stephen Heading
    • 3
  • Nanthi Bolan
    • 1
    • 2
  • Ravi Naidu
    • 1
    • 2
  1. 1.Centre for Environmental Risk Assessment and RemediationUniversity of South AustraliaMawson LakesAustralia
  2. 2.Cooperative Research Centre for Contamination Assessment and Remediation of the EnvironmentAdelaideAustralia
  3. 3.Fibrecell Pty LtdAdelaideAustralia

Personalised recommendations