Water, Air, & Soil Pollution

, Volume 223, Issue 5, pp 2463–2472

Adsorptive Removal of Pentachlorophenol by Anthracophyllum discolor in a Fixed-Bed Column Reactor

  • Olga Rubilar
  • Gonzalo R. Tortella
  • Raphael Cuevas
  • Mara Cea
  • Susana Rodríguez-Couto
  • María Cristina Diez
Article
  • 222 Downloads

Abstract

This study investigates pentachlorophenol (PCP) adsorption by the white-rot fungus Anthracophyllum discolor in a fixed-bed column reactor. PCP adsorption at different concentrations (20, 30, and 50 mg L−1) and pH values (5.0, 5.5, and 6.0) was determined and modeled using the Thomas model. Fourier transform infrared spectroscopy (FTIR) was used to identify functional groups of biomass that may participate in the interaction of PCP. The biosorption capacity of A. discolor was pH-dependent, and the PCP adsorbed increased with the decrease in the pH solution. Acid pH values of the influent gave an increase in saturation time in all PCP concentrations. By contrast, the increase in PCP concentration caused that the binding sites were filled quickly, resulting in a decrease in saturation time. The Thomas model was found suitable for describing the entire dynamic of the column with respect to the PCP concentration and pH of the solution. FTIR results showed that amines, carboxylates, alkanes, and C–O groups might participate in the PCP adsorption on the biomass surface. It was concluded that A. discolor biomass was a good adsorbent for PCP removal from influent with mainly acidic pH.

Keywords

Biosorption Pentachlorophenol Anthracophyllum discolor Fixed-bed column Thomas model 

References

  1. Ahmad, A. A., & Hameed, B. H. (2010). Fixed-bed adsorption of reactive azo dye onto granular activated carbon prepared from waste. Journal of Hazardous Materials, 175, 298–303. doi:10.1016/j.jhazmat.2009.10.003.CrossRefGoogle Scholar
  2. Aksu, Z., & Yener, J. (2001). A comparative adsorption/biosorption study of monochlorinated phenols onto various sorbents. Waste Management, 21, 695–702. doi:10.1016/S0956-053X(01)00006-X.CrossRefGoogle Scholar
  3. Arcand, Y., Hawari, J., & Guiot, S. (1995). Solubility of pentachlorophenol in aqueous solutions: The pH effect. Water Research, 29, 131–136. doi:10.1016/0043-1354(94)E0104-E.CrossRefGoogle Scholar
  4. Bayramoğlu, G., & Arica, M. Y. (2008). Removal of heavy mercury(II), cadmium(II) and zinc(II) metal ions by live and heat inactivated Lentinus edodes pellets. Chemical Engineering Journal, 143, 133–140. doi:10.1016/j.cej.2008.01.002.CrossRefGoogle Scholar
  5. Cea, M., Seaman, J. C., Jara, A., Mora, M. L., & Diez, M. C. (2005). Describing chlorophenol sorption on variable-charge soil using the triple-layer model. Journal of Colloid and Interface Science, 292, 171–178. doi:10.1016/j.jcis.2005.05.074.CrossRefGoogle Scholar
  6. Cea, M., Jorquera, M., Rubilar, O., Langer, H., Tortella, G., & Diez, M. C. (2010). Bioremediation of soil contaminated with pentachlorophenol by Anthracophyllum discolor and its effect on soil microbial community. Journal of Hazardous Materials, 181, 315–323. doi:10.1016/j.jhazmat.2010.05.013.CrossRefGoogle Scholar
  7. Denizli, A., Cihangir, N., Tüzmen, N., & Alsancak, G. (2005). Removal of chlorophenol from aquatic system using the dried and dead fungus Pleurotus sajor caju. Bioresource Technology, 96, 59–62. doi:10.1016/j.biortech.2003.11.029.CrossRefGoogle Scholar
  8. U.S. Environmental Protection Agency (2003). Environmental pollution and disease: links between exposure and health outcomes. Available on U.S. EPA web site at http://www.epa.gov/indicators/roe/pdf/tdHealth4-1.pdf
  9. Estevinho, B. N., Ribeiro, E., Alves, A., & Santos, L. (2008). A preliminary feasibility study for pentachlorophenol column sorption by almond shell residues. Chemical Engineering Journal, 136, 188–194. doi:10.1016/j.cej.2007.03.081.CrossRefGoogle Scholar
  10. Fomina, G., & Gadd, G. (2002). Influence of clay minerals on the morphology of fungal pellets. Mycological Research, 106, 107–117. doi:10.1017/S0953756201004786.CrossRefGoogle Scholar
  11. Leyva-Ramos, R., Bernal-Jacome, L. A., Mendoza-Barron, J., & Hernandez-Orta, M. M. G. (2009). Kinetic modeling of pentachlorophenol adsorption onto granular activated carbon. Taiwan Institute of Chemical Engineers, 40, 622–629. doi:10.1016/j.jtice.2009.05.006.CrossRefGoogle Scholar
  12. Li, X., Xu, Q., Han, G., Zhu, W., Chen, Z., He, X., & Tian, X. (2009). Equilibrium and kinetics studies of cooper(II) removal by three species of dead fungal biomasses. Journal of Hazardous Materials, 165, 469–474. doi:10.1016/j.hazamat.2008.10.013.CrossRefGoogle Scholar
  13. Lin, Y., Liao, W., & Chen, S. (2008). Study of pellet formation of filamentous fungi Rhizopus oryzae using a multiple logistic regression model. Biotechnology and Bioengineering, 99, 117–128. doi:10.1002/bit.21531.CrossRefGoogle Scholar
  14. Mathialagan, T., & Viraraghavan, T. (2009). Biosorption of pentachlorophenol from aqueous solutions by a fungal biomass. Bioresource Technology, 100, 549–558. doi:10.1016/j.biortech.2008.06.054.CrossRefGoogle Scholar
  15. Neilson, A. H., Allard, S. A., Hynning, P. A., Remberger, M., & Viktor, T. (1990). The environmental fate of chlorophenolic constituents of bleachery effluents. Tappi Journal, 73, 239–247.Google Scholar
  16. Pang, C., Liu, Y., Cao, X., Li, M., Huang, G., Hua, R., Wang, C., Liu, Y., & An, X. (2011). Biosorption of uranium(VI) from aqueous solution by dead fungal biomass of Penicillium citrinum. Chemical Engineering Journal, 170, 1–6. doi:10.1016/j.cej.2010.10.068.CrossRefGoogle Scholar
  17. Pasparakis, G., & Bouropoulos, N. (2006). Swelling studies and in vitro release of verapamil from calcium alginate and calcium alginate–chitosan beads. International Journal of Pharmaceutics, 323, 34–42. doi:10.1016/j.ijpharm.2006.05.054.CrossRefGoogle Scholar
  18. Radhika, M., & Palanivelu, K. (2006). Adsorptive removal of chlorophenols from aqueous solution by low cost adsorbent—Kinetics and isotherm analysis. Journal Hazardous Material, B138, 116–124. doi:10.1016/j.jhazmat.2006.05.045.CrossRefGoogle Scholar
  19. Robinson, T., McMullan, G., Marchant, R., & Nigam, P. (2001). Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresource Technology, 77, 247–255. doi:10.1016/j.jhazmat.2006.05.045.CrossRefGoogle Scholar
  20. Rubilar, O., Feijoo, G., Diez, C., Lu-Chau, T., Moreira, M. T., & Lema, J. (2007). Biodegradation of pentachlorophenol in soil slurry cultures by Bjerkandera adusta and Anthracophyllum discolor. Industrial and Engineering Chemistry Research, 46, 6744–675. doi:10.1021/ie061678b.CrossRefGoogle Scholar
  21. Tanjore, S., & Viraraghavan, T. (1994). Pentachlorophenol-water pollution impacts and removal technologies. International Journal of Environmental Studies, 45, 155–164. doi:10.1007/s11270-007-9384-2.CrossRefGoogle Scholar
  22. Taylor, T. R., Tucker, T., & Whalen, M. M. (2005). Persistent inhibition of human natural killer cell function by ziram and pentachlorophenol. Environmental Toxicology, 20, 418–424. doi:10.1002/tox.20127.CrossRefGoogle Scholar
  23. Thomas, H. C. (1944). Heterogeneous ion exchange in a flowing system. Journal of the American Chemical Society, 66, 1664–1666. doi:10.1021/ja01238a017.CrossRefGoogle Scholar
  24. Tortella, G. R., Rubilar, O., Gianfreda, L., Valenzuela, E., & Diez, M. C. (2008). Enzymatic characterization of Chilean native wood-rotting fungi for potential use in the bioremediation of polluted environments with chlorophenols. World Journal of Microbiology and Biotechnology, 24, 2805–2818. doi:10.1007/s11274-008-9810-7.CrossRefGoogle Scholar
  25. Valentin, L., Lu-Chau, T. A., Lopez, C., Feijoo, G., Moreira, M. T., & Lema, J. M. (2007). Biodegradation of dibenzothiophene, fluoranthene, pyrene and chrysene in a soil slurry reactor by the white-rot fungus Bjerkandera sp. BOS55. Process Biochemistry, 42, 641–648. doi:10.1021/ja01238a017.CrossRefGoogle Scholar
  26. Wu, J., & Yu, H. (2006). Biosorption of 2,4-dichlorophenol from aqueous solution by Phanerochaete chrysosporium biomass: Isotherms, kinetics and thermodynamics. Journal Hazardous Material, B137, 498–508. doi:10.1016/j.jhazmat.2006.02.026.CrossRefGoogle Scholar
  27. Wu, J., & Yu, H. (2008). Biosorption of 2,4-dichlorophenol from aqueous solution by immobilized Phanerochaete chrysosporium biomass in a fixed-bed column. Chemical Engineering Journal, 138, 128–135. doi:10.1016/j.cej.2007.05.051.CrossRefGoogle Scholar
  28. Žnidaršic, P., & Pavko, A. (2001). The morphology of filamentous fungi in submerged cultivations as a bioprocess parameter. Food Technology and Biotechnology, 39, 237–252. doi:10.1016/j.cej.2007.05.051.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Olga Rubilar
    • 1
  • Gonzalo R. Tortella
    • 1
  • Raphael Cuevas
    • 1
  • Mara Cea
    • 1
  • Susana Rodríguez-Couto
    • 2
  • María Cristina Diez
    • 3
  1. 1.Scientific and Technological Bioresource NucleusUniversidad de La FronteraTemucoChile
  2. 2.CEIT, Unit of Environmental EngineeringSan SebastianSpain
  3. 3.Chemical Engineering DepartmentUniversidad de La FronteraTemucoChile

Personalised recommendations