Water, Air, & Soil Pollution

, Volume 223, Issue 5, pp 2137–2143 | Cite as

Presence of Cocaine in the Tissues of the European Eel, Anguilla anguilla, Exposed to Environmental Cocaine Concentrations

  • Anna CapaldoEmail author
  • Flaminia Gay
  • Massimo Maddaloni
  • Salvatore Valiante
  • Maria De Falco
  • Mauro Lenzi
  • Vincenza Laforgia


The presence of illicit drugs and their metabolites in surface waters has to be considered a new type of hazard, still unknown, for the aquatic ecosystem, due to the potent pharmacological activities of all the illicit drugs. Our research was therefore aimed at evaluating the impact of illicit drugs on the aquatic fauna, till now still undervalued. To this aim, we verified the ability of the European eel (Anguilla anguilla), a well-known biomonitor of environmental contamination, to bioaccumulate cocaine, one of the most abundant illicit drugs found in surface waters. Silver eels were exposed to a nominal cocaine concentration of 20 ng/l for 1 month; at the same time, control, carrier, and post-exposure recovery groups were made. Brains, gills, liver, kidney, muscle, gonads, spleen, digestive tract, and sections of dorsal skin were assayed by high-pressure liquid chromatography. Cocaine was found in the tissues of the treated eels and, at low concentrations, in almost all tissues of post-exposure recovery eels. These results indicate that cocaine is able to accumulate into the eel tissues; its presence suggests potential risks for eels since cocaine could affect their physiology and contribute to their decline, and for humans consuming contaminated fish.


Cocaine bioaccumulation Eel pollution Environmental illicit drugs Fish pollution Surface water pollution 



The authors would like to dedicate this paper to the memory of a dear friend and famous endocrinologist, Prof. Tullio Criscuolo, for his loving and constant help in their work.


  1. Arinc, E., & Bozcaarmutlu, A. (2003). Catalyzation of cocaine N-demethylation by cytochromes P4502B, P4503A, and P4502D in fish liver. Journal of Biochemical and Molecular Toxicology, 17, 169–176.CrossRefGoogle Scholar
  2. Belpaire, C., & Goemans, G. (2007). The European eel Anguilla anguilla, a rapporteur of the chemical status for the water framework directive? Vie et Milieu-Life and Environment, 57, 235–252.Google Scholar
  3. Bettinetti, R., Galassi, S., Quadroni, S., Volta, P., Capoccioni, F., Ciccotti, E., et al. (2011). Use of Anguilla anguilla for biomonitoring persistent organic pollutants (POPs) in brackish and riverine waters in central and southern Italy. Water, Air, and Soil Pollution, 217, 321–331.CrossRefGoogle Scholar
  4. Brecher, E. M., & Consumers Union of United States. (1972). Licit and illicit drugs; the Consumers Union report on narcotics, stimulants, depressants, inhalants, hallucinogens, and marijuana—including caffeine, nicotine, and alcohol. Boston: Little, Brown and Company.Google Scholar
  5. Buet, A., Banas, D., Vollaire, Y., Coulet, E., & Roche, H. (2006). Biomarker responses in European eel (Anguilla anguilla) exposed to persistent organic pollutants. A field study in the Vaccarès lagoon (Camargue, France). Chemosphere, 65, 1846–1858.CrossRefGoogle Scholar
  6. Caruso, G., Maricchiolo, G., Micale, V., Genovese, L., Caruso, R., & Denaro, M. G. (2008). Physiological responses to starvation in the European eel (Anguilla anguilla): effects on haematological, biochemical, non-specific immune parameters and skin structures. Fish Physiology and Biochemistry, 36, 71–83.CrossRefGoogle Scholar
  7. Castiglioni, S., Zuccato, E., Crisci, E., Chiabrando, C., Fanelli, R., & Bagnati, R. (2006). Identification and measurement of illicit drugs and their metabolites in urban wastewater by liquid chromatography-tandem mass spectrometry. Analytical Chemistry, 78, 8421–8429.CrossRefGoogle Scholar
  8. Daughton, C. G. (2011). Illicit drugs: contaminants in the environment and utility in forensic epidemiology. In D. M. Whitacre (Ed.), Reviews of environmental contamination and toxicology (pp. 59–110). New York: Springer.Google Scholar
  9. de Boer, J., Dao, Q. T., van Leeuwen, S. P. J., Kotterman, M. J. J., & Schobben, J. H. M. (2010). Thirty year monitoring of PCBs, organochlorine pesticides and tetrabromodiphenylether in eel from The Netherlands. Environmental Pollution, 158, 1228–1236.CrossRefGoogle Scholar
  10. Fontaine, Y. A. (1994). L’argenture de l’anguille: métamorphose, anticipation, adaption. Bulletin Francais de la Péche et de la Pisciculture, 335, 171–185.CrossRefGoogle Scholar
  11. Guler, Y., & Ford, A. T. (2010). Anti-depressants make amphipods see the light. Aquatic Toxicology, 99, 397–404.CrossRefGoogle Scholar
  12. Heberer, T. (2002). Occurrence, fate, and removal of pharmaceuticals residues in the aquatic environment: a review of recent research data. Toxicology Letters, 131, 5–17.CrossRefGoogle Scholar
  13. Larsson, P., Hamrin, S., & Okla, L. (1991). Factors determining the uptake of persistant pollutants in an eel population (Anguilla anguilla). Environmental Pollution, 69, 39–50.CrossRefGoogle Scholar
  14. Levisky, J. A., Bowerman, D. L., Jenkins, W. W., & Karch, S. B. (2000). Drug deposition in adipose tissue and skin: evidence for an alternative source of positive sweat patch tests. Forensic Science International, 110, 35–46.CrossRefGoogle Scholar
  15. Lim, E. K., & Peters, T. J. (1984). Ammonium acetate: a general purpose buffer for clinical applications of high-performance liquid chromatography. Journal of Chromatography, 316, 397–406.CrossRefGoogle Scholar
  16. Macchia, T., & Gentili, S. (2006). La diagnosi laboratoristica: aspetti tecnici. In Cocaina: manuale di aggiornamento tecnico scientifico (pp. 217–244). Roma: Presidenza del consiglio dei Ministri.Google Scholar
  17. Mari, F., Politi, L., Biggeri, A., Accetta, G., Trignano, C., Padua, D., et al. (2009). Cocaine and heroin in waste water plants: a 1-year study in the city of Florence, Italy. Forensic Science International, 189, 88–92.CrossRefGoogle Scholar
  18. McCleave, J. D. (2003). Spawning areas of the Atlantic eels. In K. Aida, K. Tsukamoto, & K. Yamauchi (Eds.), Eel biology (pp. 141–156). Tokyo: Springer.Google Scholar
  19. McClung, C., & Hirsh, J. (1998). Stereotypic behavioral responses to free-base cocaine and the development of behavioral sensitization in Drosophila. Current Biology, 8, 109–112.CrossRefGoogle Scholar
  20. Nayak, P. K., Misra, A. L., & Mulé, S. J. (1976). Physiological disposition and biotransformation of (3H) cocaine in acutely and chronically treated rats. Journal of Pharmacology and Experimental Therapeutics, 196, 556–569.Google Scholar
  21. Nestler, E. J. (1992). Molecular mechanisms of drug addiction. Journal of Neuroscience, 12, 2439–2450.Google Scholar
  22. Nestler, E. J., & Malenka, R. C. (2004). The addicted brain. Scientific American, 290(3), 78–85.CrossRefGoogle Scholar
  23. Nielsen, T., & Prouzet, P. (2008). Capture-based aquaculture of the wild European eel (Anguilla anguilla). In A. Lovatelli & P. F. Holthus (Eds.), Capture based aquaculture. Global overview (pp. 141–168). Rome: FAO. FAO Fisheries Technical Paper No. 508.Google Scholar
  24. Oliveira Ribeiro, C. A., Vollaire, Y., Sanchez-Chardi, A., & Roche, H. (2005). Bioaccumulation and the effects of organochlorine pesticides, PAH and heavy metals in the eel (Anguilla anguilla) at the Camargue Nature Reserve, France. Aquatic Toxicology, 74, 53–69.CrossRefGoogle Scholar
  25. Poklis, A., Maginn, D., & Barr, J. L. (1987). Tissue disposition of cocaine in man: a report of five fatal poisonings. Forensic Science International, 33, 83–88.CrossRefGoogle Scholar
  26. Postigo, C., de Alda, M. J. L., & Barcelò, D. (2010). Drugs of abuse and their metabolites in the Ebro river basin: occurrence in sewage and surface water, sewage treatment plants removal efficiency, and collective drug usage estimation. Environment International, 36, 75–84.CrossRefGoogle Scholar
  27. Rehm, J., Taylor, B., & Room, R. (2006). Global burden of disease from alcohol, illicit drugs and tobacco. Drugs and Alcohol Review, 25, 503–513.CrossRefGoogle Scholar
  28. Schultz, M. M., Furlong, E. T., Kolpin, D. W., Werner, S. L., Schoenfuss, H. L., Barber, L. B., et al. (2010). Antidepressant pharmaceuticals in two U.S. effluent-impacted streams: occurrence and fate in water and sediment, and selective uptake in fish neural tissue. Environmental Science & Technology, 44, 1918–1925.CrossRefGoogle Scholar
  29. Schultz, M. M., Painter, M. M., Bartell, S. E., Logue, A., Furlong, E. T., Werner, S. L., et al. (2011). Selective uptake and biological consequences of environmentally relevant antidepressant pharmaceutical exposures on male fathead minnows. Aquatic Toxicology, 104, 38–47.CrossRefGoogle Scholar
  30. Sébert, M. E., Weltzien, F. A., Moisan, C., Pasqualini, C., & Dufour, S. (2008). Dopaminergic systems in the European eel: characterization, brain distribution, and potential role in migration and reproduction. Hydrobiologia, 602, 27–46.CrossRefGoogle Scholar
  31. Tagliaro, F., Antonioli, C., De Battisti, Z., Ghielmi, S., & Marigo, M. (1994). Reversed-phase high-performance liquid chromatographic determination of cocaine in plasma and human hair with direct fluorimetric detection. Journal of Chromatography, 674, 207–215.CrossRefGoogle Scholar
  32. Van Ginneken, V., Palstra, A., Leonards, P., Nieveen, M., van den Berg, H., Flik, G., et al. (2009). PCBs and the energy cost of migration in the European eel (Anguilla anguilla L.). Aquatic Toxicology, 92, 213–220.CrossRefGoogle Scholar
  33. Van Waarde, G., Van Den Thillart, G., & Kesbeke, F. (1983). Anaerobic energy metabolism of the European eel Anguilla anguilla. Journal of Comparative Physiology, 149, 469–475.Google Scholar
  34. Vidal, B., Pasqualini, C., Le Belle, N., Holland, M. C. H., Sbaihi, M., Vernier, P., et al. (2004). Dopamine inhibits luteinizing hormone synthesis and release in the juvenile European eel: a neuroendocrine lock for the onset of puberty. Biology of Reproduction, 71, 1491–1500.CrossRefGoogle Scholar
  35. Zhang, X.-L., Luo, X.-J., Liu, J., Luo, Y., Chen, S.-J., & Mai, B.-X. (2011). Polychlorinated biphenyls and organochlorinated pesticides in birds from a contaminated region in South China: association with trophic level, tissue distribution and risk assessment. Environmental Science and Pollution Research, 18, 556–565.CrossRefGoogle Scholar
  36. Zuccato, E., & Castiglioni, S. (2009). Illicit drugs in the environment. Philosophical Transactions of the Royal Society A, 367, 3965–3978.CrossRefGoogle Scholar
  37. Zuccato, E., Chiabrando, C., Castiglioni, S., Calamari, D., Bagnati, R., Schiarea, S., et al. (2005). Cocaine in surface waters: a new evidence-based tool to monitor community drug abuse. Environmental Health: A Global Access Science Source, 4, 14–21.CrossRefGoogle Scholar
  38. Zuccato, E., Castiglioni, S., Bagnati, R., Chiabrando, C., Grassi, P., & Fanelli, R. (2008). Illicit drugs, a novel group of environmental contaminants. Water Research, 42, 961–968.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Anna Capaldo
    • 1
    Email author
  • Flaminia Gay
    • 1
  • Massimo Maddaloni
    • 1
  • Salvatore Valiante
    • 1
  • Maria De Falco
    • 1
  • Mauro Lenzi
    • 2
  • Vincenza Laforgia
    • 1
  1. 1.Department of Biological Sciences, Section of Evolutive and Comparative BiologyUniversity Federico IINaplesItaly
  2. 2.Lagoon Ecology and Aquaculture LaboratoryOrbetelloItaly

Personalised recommendations