Water, Air, & Soil Pollution

, Volume 223, Issue 4, pp 1543–1553 | Cite as

Polybrominated Diphenyl Ether Dynamics in Ambient Air and Atmospheric Bulk/Wet Deposition in Downtown Paris (France)

  • Khawla TliliEmail author
  • Pierre Labadie
  • Fabrice Alliot
  • Catherine Bourges
  • Annie Desportes
  • Marc Chevreuil


This study reports on the polybrominated diphenyl ether (PBDE) atmospheric dynamics in the dense urban environment of downtown Paris (France). Eight PBDE congeners (BDE-28, BDE-47, BDE-100, BDE-99, BDE-154, BDE-153, BDE-183 and BDE-209) were simultaneously analysed in bulk and wet atmospheric deposition, as well as in ambient air (gaseous/particulate phases), twice a month over a 12-month period (May 2008–May 2009). The total air concentration of Σ 8PBDEs ranged between 12 and 185 pg m−3, and the seasonal variations of PBDE levels were controlled by air temperature (except for BDE-209). Regarding bulk deposition, Σ 8PBDE flux was in the range 5–94 ng m−2 day−1, and it was positively correlated with atmospheric particulate phase PBDE concentrations. Meanwhile, the measured wet deposition flux of Σ 8PBDE ranged between 2 and 24 ng m−2 day−1, and its median contribution to bulk deposition was 39% only, which highlights the importance of dry deposition.


Polybrominated diphenyl ethers Air Gas–particle partitioning Atmospheric deposition 



The gas-phase PBDE concentrations in picograms per cubic metre


Brominated flame retardants




The particle-associated contaminant fraction in rainwater in picograms per litre


The aerosol-bound PBDE concentrations in picograms per cubic metre


European Union


The particle-associated PBDE concentrations in picograms per cubic metre


Gas chromatograph coupled to mass spectrometer operated in negative chemical ionisation mode


Gas–particle partitioning coefficient


Limit of detection


Limit of quantification


Partial pressure in atmosphere


Polybrominated diphenyl ethers


Persistence bioaccumulation and toxicity


The ideal gas constant


The temperature in kelvin


The total suspended particle level in ambient air in micrograms per cubic metre


Dry deposition velocity in centimetres per second


Particle scavenging ratio


The enthalpy in kilojoules per mole


The enthalpy of vaporization of the subcooled liquid in kilojoules per mole


The enthalpy of vaporization for octanol–air exchange in kilojoules per mole



This work was funded by the Piren Seine programme ( The authors also wish to acknowledge the Ile-de-France Regional Council for providing PhD funding for K. Tlili (R2DS grant).


  1. Agrell, C., ter Schure, A. F. H., Sveder, J., Bokenstrand, A., Larsson, P., & Zegers, B. N. (2004). Polybrominated diphenyl ethers (PBDEs) at a solid waste incineration plant I: Atmospheric concentrations. Atmospheric Environment, 38(30), 5139–5148.CrossRefGoogle Scholar
  2. Bidleman, T. F. (1988). Atmospheric processes. Environmental Science & Technology, 22(4), 361.CrossRefGoogle Scholar
  3. BSEF. (2009). European regulation and brominated flame retardants.
  4. Cetin, B., & Odabasi, M. (2007). Particle-phase dry deposition and air–soil gas-exchange of polybrominated diphenyl ethers (PBDEs) in Izmir, Turkey. Environmental Science & Technology, 41(14), 4986–4992.CrossRefGoogle Scholar
  5. Cetin, B., & Odabasi, M. (2008). Atmospheric concentrations and phase partitioning of polybrominated diphenyl ethers (PBDEs) in Izmir, Turkey. Chemosphere, 71(6), 1067–1078.CrossRefGoogle Scholar
  6. Coquery, M., Morin, A., Bécue, A., & Lepot, B. (2005). Priority substances of the European Water Framework Directive: Analytical challenges in monitoring water quality. TrAC Trends in Analytical Chemistry, 24(2), 117–127.CrossRefGoogle Scholar
  7. de Wit, C. A., Alaee, M., & Muir, D. C. G. (2006). Levels and trends of brominated flame retardants in the Arctic. Chemosphere, 64(2), 209–233.CrossRefGoogle Scholar
  8. de Wit, C. A., Herzke, D., & Vorkamp, K. (2010). Brominated flame retardants in the Arctic environment—trends and new candidates. Science of the Total Environment, 408(15), 2885–2918.CrossRefGoogle Scholar
  9. Dimitrov, S. D., Dimitrova, N. C., Walker, J. D., Veith, G. D., & Mekenyan, O. G. (2003). Bioconcentration potential predictions based on molecular attributes—an early warning approach for chemicals found in humans, birds, fish and wildlife. QSAR and Combinatorial Science, 22(1), 58–68.CrossRefGoogle Scholar
  10. Gambaro, A., Radaelli, M., Piazza, R., Stortini, A. M., Contini, D., Belosi, F., et al. (2009). Organic micropollutants in wet and dry depositions in the Venice Lagoon. Chemosphere, 76(8), 1017–1022.CrossRefGoogle Scholar
  11. Gouin, T., Thomas, G. O., Chaemfa, C., Harner, T., Mackay, D., & Jones, K. C. (2006). Concentrations of decabromodiphenyl ether in air from Southern Ontario: Implications for particle-bound transport. Chemosphere, 64(2), 256–261.CrossRefGoogle Scholar
  12. Harner, T., & Bidleman, T. F. (1998). Octanol-air partition coefficient for describing particle/gas partitioning of aromatic compounds in urban air. Environmental Science & Technology, 32(10), 1494–1502.CrossRefGoogle Scholar
  13. Harner, T., & Shoeib, M. (2002). Measurements of octanol–air partition coefficients (KOA) for polybrominated diphenyl ethers (PBDEs): Predicting partitioning in the environment. Journal of Chemical & Engineering Data, 47(2), 228–232.CrossRefGoogle Scholar
  14. Harner, T., Shoeib, M., Diamond, M., Ikonomou, M., & Stern, G. (2006). Passive sampler derived air concentrations of PBDEs along an urban–rural transect: Spatial and temporal trends. Chemosphere, 64(2), 262–267.CrossRefGoogle Scholar
  15. Harrad, S., & Hunter, S. (2006). Concentrations of polybrominated diphenyl ethers in air and soil on a rural–urban transect across a major UK conurbation. Environmental Science & Technology, 40(15), 4548–4553.CrossRefGoogle Scholar
  16. Hayakawa, K., Takatsuki, H., Watanabe, I., & Sakai, S-i. (2004). Polybrominated diphenyl ethers (PBDEs), polybrominated dibenzo-p-dioxins/dibenzofurans (PBDD/Fs) and monobromo-polychlorinated dibenzo-p-dioxins/dibenzofurans (MoBPXDD/Fs) in the atmosphere and bulk deposition in Kyoto, Japan. Chemosphere, 57(5), 343–356.CrossRefGoogle Scholar
  17. Hoff, R. M., Brice, K. A., & Halsall, C. J. (1998). Nonlinearity in the slopes of Clausius–Clapeyron plots for SVOCs. Environmental Science & Technology, 32(12), 1793–1798.CrossRefGoogle Scholar
  18. Hoh, E., & Hites, R. A. (2005). Brominated flame retardants in the atmosphere of the east-central United States. Environmental Science & Technology, 39(20), 7794–7802.CrossRefGoogle Scholar
  19. Jaward, F. M., Farrar, N. J., Harner, T., Sweetman, A. J., & Jones, K. C. (2003). Passive air sampling of PCBs, PBDEs, and organochlorine pesticides across Europe. Environmental Science & Technology, 38(1), 34–41.CrossRefGoogle Scholar
  20. Koester, C. J., & Hites, R. A. (1992). Wet and dry deposition of chlorinated dioxins and furans. Environmental Science & Technology, 26(7), 1375–1382.CrossRefGoogle Scholar
  21. Labadie, P., Tlili, K., Alliot, F., Bourges, C., Desportes, A., & Chevreuil, M. (2010). Development of analytical procedures for trace-level determination of polybrominated diphenyl ethers and tetrabromobisphenol A in river water and sediment. Analytical and Bioanalytical Chemistry, 396(2), 865–875.CrossRefGoogle Scholar
  22. Lee, R. G. M., Thomas, G. O., & Jones, K. C. (2004). PBDEs in the atmosphere of three locations in western Europe. Environmental Science & Technology, 38(3), 699–706.CrossRefGoogle Scholar
  23. Moon, H.-B., Kannan, K., Lee, S.-J., & Choi, M. (2007). Atmospheric deposition of polybrominated diphenyl ethers (PBDEs) in coastal areas in Korea. Chemosphere, 66(4), 585–593.CrossRefGoogle Scholar
  24. Muresan, B., Lorgeoux, C., Gasperi, J., & Moilleron, R. (2010). Fate and spatial variations of polybrominated diphenyl ethers in the deposition within a heavily urbanized area: case of Paris (France). Water Science and Technology, 62(4), 822–828.CrossRefGoogle Scholar
  25. Qiu, X., Zhu, T., & Hu, J. (2010). Polybrominated diphenyl ethers (PBDEs) and other flame retardants in the atmosphere and water from Taihu Lake, East China. Chemosphere, 80, 1207–1212.CrossRefGoogle Scholar
  26. Shen, L., Wania, F., Lei, Y. D., Teixeira, C., Muir, D. C. G., & Xiao, H. (2006). Polychlorinated biphenyls and polybrominated diphenyl ethers in the North American atmosphere. Environmental Pollution, 144(2), 434–444.CrossRefGoogle Scholar
  27. St-Amand, A. D., Mayer, P. M., & Blais, J. M. (2008). Seasonal trends in vegetation and atmospheric concentrations of PAHs and PBDEs near a sanitary landfill. Atmospheric Environment, 42(13), 2948–2958.CrossRefGoogle Scholar
  28. Strandberg, B., Dodder, N. G., Basu, I., & Hites, R. A. (2001). Concentrations and spatial variations of polybrominated diphenyl ethers and other organohalogen compounds in Great Lakes Air. Environmental Science & Technology, 35(6), 1078–1083.CrossRefGoogle Scholar
  29. Ter Schure, A. F. H., & Larsson, P. (2002). Polybrominated diphenyl ethers in precipitation in southern Sweden (Skåne, Lund). Atmospheric Environment, 36(25), 4015–4022.CrossRefGoogle Scholar
  30. Ter Schure, A. F. H., Agrell, C., Bokenstrand, A., Sveder, J., Larsson, P., & Zegers, B. N. (2004). Polybrominated diphenyl ethers at a solid waste incineration plant II: Atmospheric deposition. Atmospheric Environment, 38(30), 5149–5155.CrossRefGoogle Scholar
  31. Ter Schure, A. F. H., Larsson, P., Agrell, C., & Boon, J. P. (2004). Atmospheric transport of polybrominated diphenyl ethers and polychlorinated biphenyls to the Baltic sea. Environmental Science & Technology, 38(5), 1282–1287.CrossRefGoogle Scholar
  32. Tian, M., Chen, S.-J., Wang, J., Shi, T., Luo, X.-J., & Mai, B.-X. (2011). Atmospheric deposition of halogenated flame retardants at urban, E-waste, and rural locations in southern China. Environmental Science & Technology, 45(11), 4696–4701.CrossRefGoogle Scholar
  33. Tittlemier, S. A., Halldorson, T., Stern, G. A., & Tomy, G. T. (2002). Vapor pressures, aqueous solubilities, and Henry's law constants of some brominated flame retardants. Environmental Toxicology and Chemistry, 21(9), 1804–1810.CrossRefGoogle Scholar
  34. Venier, M., & Hites, R. A. (2008). Flame retardants in the atmosphere near the Great Lakes. Environmental Science & Technology, 42(13), 4745–4751.CrossRefGoogle Scholar
  35. Vives, I., Canuti, E., Castro-Jimenez, J., Christoph, E. H., Eisenreich, S. J., Hanke, G., et al. (2007). Occurrence of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) in Lake Maggiore (Italy and Switzerland). Journal of Environmental Monitoring, 9(6), 589–598.CrossRefGoogle Scholar
  36. Wania, F., & Dugani, C. B. (2003). Assessing the long-range transport potential of polybrominated diphenyl ethers: A comparison of four multimedia models Environ. Toxicol. Chem, 22(6), 1252–1261.CrossRefGoogle Scholar
  37. Wilford, B. H., Thomas, G. O., Jones, K. C., Davison, B., & Hurst, D. K. (2008). Decabromodiphenyl ether (deca-BDE) commercial mixture components, and other PBDEs, in airborne particles at a UK site. Environment International, 34(3), 412–419.CrossRefGoogle Scholar
  38. Wong, A., Lei, Y. D., Alaee, M., & Wania, F. (2000). Vapor pressures of the polybrominated diphenyl ethers. Journal of Chemical & Engineering Data, 46(2), 239–242.CrossRefGoogle Scholar
  39. Yamasaki, H., Kuwata, K., & Miyamoto, H. (1982). Effects of ambient temperature on aspects of airborne polycyclic aromatic hydrocarbons. Environmental Science & Technology, 16(4), 189–194.CrossRefGoogle Scholar
  40. Zhang, B.-Z., Guan, Y.-F., Li, S.-M., & Zeng, E. Y. (2009). Occurrence of polybrominated diphenyl ethers in air and precipitation of the Pearl River Delta, South China: Annual washout ratios and depositional rates. Environmental Science & Technology, 43(24), 9142–9147.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Khawla Tlili
    • 1
    Email author
  • Pierre Labadie
    • 1
    • 2
  • Fabrice Alliot
    • 3
  • Catherine Bourges
    • 3
  • Annie Desportes
    • 3
  • Marc Chevreuil
    • 3
  1. 1.UMR 7619 Sisyphe, CNRS/UPMCUniversité Pierre et Marie CurieParis Cedex 05France
  2. 2.UMR 5805 EPOC, Equipe LPTC, Bâtiment A12Université Bordeaux ITalenceFrance
  3. 3.Laboratoire Hydrologie et Environnement EPHE, UMR 7619 SisypheUniversité Pierre et Marie CurieParis Cedex 05France

Personalised recommendations