Water, Air, & Soil Pollution

, Volume 223, Issue 4, pp 1519–1530 | Cite as

Intracellular Versus Extracellular Iron Accumulation in Freshwater Periphytic Mats Across a Mine Water Treatment Lagoon

  • Erin Letovsky
  • Kate V. Heal
  • Laurence Carvalho
  • Bryan M. Spears
Article

Abstract

Despite the importance of periphyton–metal interactions in bioremediation schemes and in phosphorus (P) cycling, the processes controlling metal accumulation in periphytic mats are still poorly understood. Iron (Fe) accumulation in periphytic mats was examined across a Fe settlement lagoon receiving mine drainage in Scotland, UK, between March and June 2008. Quantification and mapping of intracellular and extracellular Fe concentrations in periphyton samples using scanning electron microscopy–energy dispersive spectroscopy suggested that Fe accumulation was dominated by the association of Fe-rich precipitates with the extracellular polymeric substances matrix, rather than biotic uptake. Intracellular Fe concentrations were significantly higher in periphyton samples exposed to the highest dissolved Fe concentrations. Neither intracellular nor extracellular Fe concentrations were significantly affected by light availability or cell density. While diatoms dominated the periphyton communities there was no significant association of diatom functional groups with Fe accumulation, indicating that community composition may not affect the function of periphytic mats with respect to Fe removal. Scale-up calculations based on the mean measured Fe accumulation rate by periphyton substrates of 0.021 g m−2 day−1 showed that exposure of large surface areas of periphyton substrate in the settlement lagoon would only increase the Fe removal efficiency of the lagoon by c.1%.

Keywords

Algae Diatom Extracellular polymeric substances Iron Mine water SEM-EDS 

References

  1. Aguilera, A., Souza-Egipsy, V., San Martín-Úriz, P., & Amils, R. (2008). Extracellular matrix assembly in extreme acidic eukaryotic biofilms and their possible implications in heavy metal adsorption. Aquatic Toxicology, 88(4), 257–266.CrossRefGoogle Scholar
  2. Behra, R., Landwehrjohann, R., Vogel, K., Wagner, B., & Sigg, L. (2002). Copper and zinc content of periphyton from two rivers as a function of dissolved metal concentration. Aquatic Sciences, 64(3), 300–306.CrossRefGoogle Scholar
  3. Bellinger, B. J., Getz, M. R., Domozych, D. S., Kiemle, S. N., & Hagerthey, S. E. (2010). Composition of extracellular polymeric substances from periphyton assemblages in the Florida Everglades. Journal of Phycology, 46(3), 484–496.CrossRefGoogle Scholar
  4. Bender, J., & Phillips, P. (2004). Microbial mats for multiple applications in aquaculture and bioremediation. Bioresource Technology, 94(3), 229–238.CrossRefGoogle Scholar
  5. Boström, B., Anderson, J. M., Fleischer, S., & Jansson, M. (1988). Exchange of phosphorus across the sediment–water interface. Hydrobiologia, 170(1), 229–244.CrossRefGoogle Scholar
  6. Braissant, O., Decho, A. W., Dupraz, C., Glunk, C., Przekop, K. M., & Visscher, P. T. (2007). Exopolymeric substances of sulfate-reducing bacteria: interactions with calcium at alkaline pH and implication for formation of carbonate minerals. Geobiology, 5(4), 401–411.CrossRefGoogle Scholar
  7. CEN (European Committee for Standardization) (2004). Water quality. Standard for the routine analysis of phytoplankton abundance and composition using inverted microscopy (Utermöhl technique). CEN/TC230/WG2/TG3/N83 report.Google Scholar
  8. Chen, M., & Wang, W. X. (2001). Bioavailability of natural colloid-bound iron to marine plankton: Influences of colloidal size and aging. Limnology and Oceanography, 46(8), 1956–1967.CrossRefGoogle Scholar
  9. Chow, V. T. (1959). Open-channel hydraulics. New York: McGraw Hill Education.Google Scholar
  10. de Brouwer, J. F. C., Cooksey, K. D., Wigglesworth-Cooksey, B., Staal, M. J., Stal, L. J., & Avci, R. (2006). Time of flight-secondary ion mass spectrometry on isolated extracellular fractions and intact biofilms of three species of benthic diatoms. Journal of Microbiological Methods, 65(3), 562–572.CrossRefGoogle Scholar
  11. de Brouwer, J. F. C., Wolfstein, K., Ruddy, G. K., Jones, T. E. R., & Stal, L. J. (2005). Biogenic stabilization of intertidal sediments: The importance of extracellular polymeric substances produced by benthic diatoms. Microbial Ecology, 49(4), 501–512.CrossRefGoogle Scholar
  12. Garnham, G. W., Codd, G. A., & Gadd, G. M. (1992). Accumulation of cobalt, zinc and manganese by the estuarine green microalga Chlorella salina immobilized in alginate microbeads. Environmental Science and Technology, 26(9), 1764–1770.CrossRefGoogle Scholar
  13. Gerbersdorf, S. U., Bittner, R., Lubarsky, H., Manz, W., & Paterson, D. M. (2009). Microbial assemblages as ecosystem engineers of sediment stability. Journal of Soils and Sediments, 9(6), 640–652.CrossRefGoogle Scholar
  14. Gerbersdorf, S. U., Jancke, T., Westrich, B., & Paterson, D. M. (2008). Microbial stabilization of riverine sediments by extracellular polymeric substances. Geobiology, 6(1), 57–69.Google Scholar
  15. Gerbersdorf, S. U., Westrich, B., & Paterson, D. M. (2009). Microbial extracellular polymeric substances (EPS) in fresh water sediments. Microbial Ecology, 58(2), 334–349.CrossRefGoogle Scholar
  16. Gray, B. R., & Hill, W. R. (1995). Nickel sorption by periphyton exposed to different light intensities. Journal of the North American Benthological Society, 14(2), 299–305.CrossRefGoogle Scholar
  17. Gray, B. R., Hill, W. R., & Stewart, A. J. (2001). Effects of development time, biomass and ferromanganese oxides on nickel sorption by stream periphyton. Environmental Pollution, 112(1), 61–71.CrossRefGoogle Scholar
  18. Heldal, M., Norland, S., & Tumyr, O. (1985). X-ray microanalytic method for measurement of dry matter and elemental content of individual bacteria. Applied and Environmental Microbiology, 50(5), 1251–1257.Google Scholar
  19. Hill, W. R., Bednarek, A. T., & Larsen, I. L. (2000). Cadmium sorption and toxicity in autotrophic biofilms. Canadian Journal of Fisheries and Aquatic Sciences, 57(3), 530–537.CrossRefGoogle Scholar
  20. Hoagland, K. D., Rosowski, J. R., Gretz, M. R., & Roemer, S. C. (1993). Diatom extracellular polymeric substances: Function, fine structure, chemistry, and physiology. Journal of Phycology, 29(5), 537–566.CrossRefGoogle Scholar
  21. Kalin, M. (1998). Biological polishing of zinc in a mine waste management area. In W. Geller, H. Klapper, & W. Salomons (Eds.), Acidic mining lakes: Acid mine drainage, limnology and reclamation (pp. 321–334). Heidelberg: Springer.Google Scholar
  22. Kalin, M., Wheeler, W. N., & van Everdingen, R. O. (1991). Periphyton communities as biological polishing agents in mine waste waters and the precipitation process in tailings. Final Report to CANMET, DSS File 028SQ.23440-0-9182. Toronto: Boojum Research Ltd.Google Scholar
  23. Liehr, S. K., Chen, H. J., & Lin, S. H. (1994). Metals removal by algal biofilms. Water Science and Technology, 30(11), 59–68.Google Scholar
  24. Meylan, S., Behra, R., & Sigg, L. (2003). Accumulation of copper and zinc in periphyton in response to dynamic variations of metal speciation in freshwater. Environmental Science and Technology, 37(22), 5204–5212.CrossRefGoogle Scholar
  25. Meylan, S., Behra, R., & Sigg, L. (2004). Influence of metal speciation in natural freshwater on bioaccumulation of copper and zinc in periphyton: A microcosm study. Environmental Science and Technology, 38(11), 3104–3111.CrossRefGoogle Scholar
  26. Newman, M. C., Alberts, J. J., & Greenhut, V. A. (1985). Geochemical factors complicating the use of aufwuchs to monitor bioaccumulation of arsenic, cadmium, chromium, copper, and zinc. Water Research, 19(9), 1157–1165.CrossRefGoogle Scholar
  27. Newman, M. C., McIntosh, A. W., & Greenhut, V. A. (1983). Geochemical factors complicating the use of aufwuchs as a biomonitor for lead levels in two New Jersey reservoirs. Water Research, 17(6), 625–630.CrossRefGoogle Scholar
  28. Pal, A., & Paul, A. K. (2008). Microbial extracellular polymeric substances: central elements in heavy metal bioremediation. Indian Journal of Microbiology, 48(1), 49–64.CrossRefGoogle Scholar
  29. Riethmüller, R., Heineke, M., Kühl, H., & Keuker-Rüdiger, R. (2000). Chlorophyll a concentration as an index of sediment surface stabilisation by microphytobenthos? Continental Shelf Research, 20(10–11), 1351–1372.CrossRefGoogle Scholar
  30. Spears, B. M., Carvalho, L., Perkins, R., & Paterson, D. M. (2008). Effects of light on sediment nutrient flux and water column nutrient stoichiometry in a shallow lake. Water Research, 42(4–5), 977–986.CrossRefGoogle Scholar
  31. Spears, B. M., Funnell, J., Saunders, J., & Paterson, D. M. (2007). On the boundaries: sediment stability measurements across aquatic ecosystems. In B. Westrich & U. Förstner (Eds.), Sediment dynamics and pollutant mobility in rivers: An interdisciplinary approach (pp. 68–79). New York: Springer.Google Scholar
  32. Staats, N., de Winder, B., Stal, L. J., & Mur, L. R. (1999). Isolation and characterization of extracellular polysaccharides from the epipelic diatoms Cylindrotheca closterium and Navicula salinarum. European Journal of Phycology, 34(2), 161–169.CrossRefGoogle Scholar
  33. Underwood, G. J. C., & Smith, D. J. (1998). Predicting epipelic diatom exopolymer concentrations in intertidal sediments from sediment chlorophyll. Microbial Ecology, 35(2), 116–125.CrossRefGoogle Scholar
  34. Vymazal, J. (1984). Short-term uptake of heavy metals by periphyton algae. Hydrobiologia, 119(3), 171–179.CrossRefGoogle Scholar
  35. Wigglesworth-Cooksey, B., Berglund, D., & Cooksey, K. E. (2001). Cell–cell and cell–surface interactions in an illuminated biofilm: Implications for marine sediment stabilization. Geochemical Transactions, 2(1), 75.CrossRefGoogle Scholar
  36. Xue, H. B., Stumm, W., & Sigg, L. (1988). The binding of heavy metals to algal surfaces. Water Research, 22(7), 917–926.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Erin Letovsky
    • 1
  • Kate V. Heal
    • 1
  • Laurence Carvalho
    • 2
  • Bryan M. Spears
    • 2
  1. 1.School of GeoSciencesThe University of EdinburghEdinburghUK
  2. 2.Centre for Ecology and HydrologyBush EstateMidlothianUK

Personalised recommendations