Water, Air, & Soil Pollution

, Volume 223, Issue 3, pp 1393–1414 | Cite as

Impact of Emission Reductions between 1980 and 2020 on Atmospheric Benzo[a]pyrene Concentrations over Europe

  • Johannes BieserEmail author
  • Armin Aulinger
  • Volker Matthias
  • Markus Quante


Benzo[a]pyrene (BaP) has been proven to be toxic and carcinogenic. Since 2010, the European Union officially established target values for BaP concentrations in ambient air. In this study BaP concentrations over Europe have been modelled using a modified version of the chemistry transport model Community Multiscale Air Quality (CMAQ) which includes the relevant reactions of BaP. CMAQ has been run using different emission datasets for the years 1980, 2000, and 2020 as input data. In this study, the changes in BaP concentrations between 1980 and 2020 are evaluated and regions which exceed the European annual target value of 1 ng/m3 are identified, i.e. the Po Valley, the Paris metropolitan area, the Rhine-Ruhr area, Vienna, Madrid, and Moscow. Additionally, the impact of emission reductions on atmospheric concentrations of BaP is investigated. Between 1980 and 2000, half of the BaP emission reductions are due to lower emissions from industrial sources. These emission reductions, however, only contribute to one third of the total ground-level BaP concentration reduction. Further findings are that between 2000 and 2020, a large part (40%) of the BaP concentration reduction is not due to changes in BaP emissions but caused by changes in emissions of criteria pollutants which have an impact on the formation of ozone.


PAH Benzo[a]pyrene Atmospheric concentrations Emission reduction Chemistry transport model CMAQ 



US EPA is gratefully acknowledged for the use of SMOKE and CMAQ. We are thankful to Beate Geyer for providing the COSMO-CLM meteorological fields and to Hugo Denier van der Gon and Joseph Pacyna for the emission data. EMEP gratefully acknowledged for providing data on emissions and observations. Finally, we thank Twan van Noije from KNMI for providing data from the TM4 model.


  1. Aas, W., & Hjellbrekke, A. (2003). Heavy metals and POP measurements (EMEP/CCC-report 1/2003). Kjeller: Norwegian Institute for Air Research.Google Scholar
  2. Armstrong, B., Tremblay, C., Baris, D., & Thériault, G. (1994). Lung cancer mortality and polynuclear aromatic hydrocarbons: a case-cohort study of aluminum production workers in Arvida, Québec, Canada. American Journal of Epidemiology, 139, 250–262. cited in DETR, 1999.Google Scholar
  3. ATSDR (Agency for Toxic Substances and Disease Registry). (1995). Toxicological profile for polycyclic aromatic hydrocarbons. Atlanta: US Department of Health and Human Services.Google Scholar
  4. Aulinger, A., Matthias, V., & Quante, M. (2010). An approach to temporally disaggregate benzo(a)pyrene emissions and their application to a 3D Eulerian atmospheric chemistry transport model. Water, Air, and Soil Pollution. doi: 10.1007/s11270-010-0559-x.
  5. Berdowski, J.J.M., Veldt, C., Baas, J., Klein, A.E. (1995). Technical paper to the OSPARCOM-HELCOM-UNECE emission inventory for heavy metals and persistent organic pollutants. TNO-report. TNO MEP-R95/247 Delft, The Netherlands.Google Scholar
  6. Berdowski, J. J. M., Baas, J., Bloos, J. P. J., Visschedijk, A. J. H., & Zandweld, P. Y. J. (1997). The European emission inventory of heavy metals and persistent organic pollutants for 1990. Forschungsbericht 104 02 672/03. Umweltforschungsplan des Bundesministers für Umwelt, Naturschutz und Reaktorsicherheit. Utrecht: TNO.Google Scholar
  7. Berdowski, J., Bleeker, A., Visschedijk, A.J.H., Holland, M.R., Jones, H.H. (2001). Economic evaluation of air quality targets for PAHs. European Commission Report AEAT/ENV/R0593, ED21191/7.Google Scholar
  8. Bieser, J., Aulinger, A., Matthias, M., Quante, M., & Builtjes, P. (2011a). SMOKE for Europe—adaptation, modification and evaluation of a comprehensive emission model for Europe. Geosci. Model Dev, 4, 47–68. doi: 0.5194/gmd-9734-47-2011. Available online: Scholar
  9. Bieser, J., Aulinger, A., Matthias, V., Quante, M., & Denier van der Gon, H. A. C. (2011b). Vertical emission profiles for Europe based on plume rise calculations. Environmental Pollution. doi: 10.1016/j.envpol.2011.04.030.
  10. Breivik, K., Alcock, R., Li, Y. F., Bailey, R. E., Fiedler, H., & Payna, J. M. (2004). Primary sources of selected POPs: regional and global scale emission inventories. Environmental Pollution, 128(2004), 3–16.CrossRefGoogle Scholar
  11. Breivik, K., Vestreng, V., Rozovskaya, O., & Pacyna, J. M. (2006). Atmospheric emissions of some POPs in Europe: a discussion of existing inventories and data needs. Environmental Science and Policy, 9(2006), 663–674.CrossRefGoogle Scholar
  12. Byun, D. W., & Ching, J. K. S. (1999). Science algorithms of the EPA models-3 Community Multi-scale Air Quality (CMAQ) Modeling System, EPA/600/R-99/030. Research Triangle Park: US EPA National Exposure Research Laboratory.Google Scholar
  13. Byun, D. W., & Schere, K. L. (2006). Review of the governing equations, computational algorithms, and other components of the models-3 Community Multiscale Air Quality (CMAQ) modeling system. Applied Mechanics Reviews, 59(2), 51–77.CrossRefGoogle Scholar
  14. DEFR/EA (Department for Environment, Food and Rural Affairs and the Environment Agency), (2002). Rio House, Waterside Drive, Aztec West, Almondsbury, BRISTOL, BS32 4UD.Google Scholar
  15. Denier van der Gon, H.A.C., Visschedijk, A.J.H., van het Bolscher, M. (2005). Study to the effectiveness of the UNECE Persistent Organic Pollutants (POP) Protocol and cost of additional measures. Phase I: estimation of emission reduction resulting from the implementation of the POP Protocol. TNO-report B&O-A R2005/194. Utrecht, The Netherlands.Google Scholar
  16. Denier van der Gon, H.A.C., Visschedijk, A.J.H., van het Bolscher, M. (2006). Study to the effectiveness of the UNECE Persistent Organic Pollutants (POP) Protocol and cost of additional measures. Phase II: estimated emission reduction and cost of options for a possible revision of the POP Protocol. TNO-report 2006-A-R0187/B. Utrecht, The Netherlands.Google Scholar
  17. Denier van der Gon, H. A. C., van het Bolscher, M., Visschedijk, A. J. H., & Zandveld, P. Y. J. (2007). Emissions of persistent organic pollutants and eight candidate POPs from UNECE-Europe in 2000, 2010 and 2020 and the emission reduction resulting from the implementation of the UNECE POP protocol. Atmospheric Environment, 41(2007), 9245–9261.CrossRefGoogle Scholar
  18. DETR (Department of the Environment, Transport and the Regions). (1999). Polycyclic aromatic hydrocarbons, DETR Expert Panel on Air Quality Standards. London: DETR. ISBN 0-11-753503-6.Google Scholar
  19. EC (European Commission). (2002). Directive 2002/80/EC of 3 October 2002 adapting to technical progress. Council directive 70/220/EEC relating to measures to be taken against air pollution by emissions from motor vehicles. Official Journal of the European Union, 291, 20–56.Google Scholar
  20. EC (European Commission). (2004). Directive 2004/107/EC of the European Parliament and of the Council. Official Journal of the European Union, L23, 3–16.Google Scholar
  21. EC (European Commission). (2008). Directive 2008/1/EC of the European Parliament and of the Council of 15 January 2008 concerning integrated pollution prevention and control. Official Journal of the European Union, 024, 8–29.Google Scholar
  22. EEC (European Economic Community). (1970). Council directive 70/220/EEC of 20 March 1970 on the approximation of the laws of the Member States relating to measures to be taken against air pollution by gases from positive-ignition engines of motor vehicles. Official Journal of the European Union, 76, 1–22.Google Scholar
  23. EPA (U.S. Environmental Protection Agency). (1984). Review and evaluation of the evidence for cancer associated with air pollution. Final report 68-02-3396. Chicago: U.S. EPA Pollutant Assessment Branch Office of Air Quality Planning and Standards.Google Scholar
  24. EPAQS (Expert Panel on Air Quality Standards). (1999). Polycyclic aromatic hydrocarbons. London: EPAQS.Google Scholar
  25. Gusev, A., Mantseva, E., Shatalov, V., & Strukov, B. (2005). Regional multicompartment model MSCE-POP. MCE-E technical report 5/2005. Moscow: Meteorological Synthesizing Centre–East.Google Scholar
  26. Hauck, M., Huijbregts, M. A. J., Armitage, J. M., Cousins, I. T., Ragas, A. M. J., & van de Meent, D. (2008). Model and input uncertainty in multi-media fate modeling: benzo[a]pyrene concentrations in Europe. Chemosphere, 72(2008), 959–967.CrossRefGoogle Scholar
  27. Jonson, J.E., Travnikov, O. (2010). Development of the EMEP global modeling framework: Progress report. Joint MSC-W/MSC-E Report X/2010 (in press)Google Scholar
  28. Khalfi, A., Trouvé, G., Delobel, R., & Delfosse, L. (2000). Correlation of CO and PAH emissions during laboratory-scale incineration of wood waste furnitures. Journal of Analytical and Applied Pyrolysis, 56(2000), 243–262.CrossRefGoogle Scholar
  29. Klöpffer, W. (1994). Environmental hazard-assessment of chemicals and products 2. Persistence and degradability of organic chemicals. Environmental Science and Pollution Research, 8, 108–116.CrossRefGoogle Scholar
  30. Kwamena, N. O. A., Thornton, J. A., & Abbatt, J. P. D. (2004). Kinetics of surface-bound benzo[a]pyrene and ozone on solid organic and salt aerosols. The Journal of Physical Chemistry. A, 108, 11626–11634.CrossRefGoogle Scholar
  31. Lohmann, R., & Lammel, G. (2004). Adsorptive and absorptive contributions to the gas–particle partitioning of polycyclic aromatic hydrocarbons: state of knowledge and recommended parametrization for modeling. Critical Review Environmental Science and Technology, 38(14).Google Scholar
  32. Lohmann, R., Breivik, K., Dachs, J., & Muir, D. (2007). Global fate of POPs: current and future research directions. Environmental Pollution, 150(2007), 150–165.CrossRefGoogle Scholar
  33. Mantseva, E., Dutchak, S., Rozovskaya, O., Shatalov, V. (2004). EMEP contribution to the Preparatory Work of the Review of the CLRTAP Protocol on Persistent Organic Pollutants. MSC-E Information Note 5/2004. Meteorological Synthesizing Centre–East, Moscow, Russia.Google Scholar
  34. Mareckova, K., Wankmueller, R., Anderl, M., Muik, B., Poupa, S., Wieser, M., Inventory Review (2008), Emission data reported under the LRTAP Convention and NEC Directive, Stage 1 and 2 review, Status of gridded data, EEA & CEIP, 2008Google Scholar
  35. Matthias, V., Aulinger, A., & Quante, M. (2009a). Determination of the optimum MM5 configuration for long term CMAQ simulations of aerosol bound pollutants in Europe. Environ. Fluid. Mech, 9(1), 91–108.CrossRefGoogle Scholar
  36. Matthias, V., Aulinger, A., & Quante, M. (2009b). CMAQ simulations of the benzo(a)pyrene distribution over Europe for 2000 and 2001. Atmospheric Environment, 43(2009), 4078–4086.CrossRefGoogle Scholar
  37. Pacyna, J.M. et al. (1999). Technical report. Appendix 1 to the Executive Final Summary Report. Environmental cycling of selected persistent organic pollutants (POPs) in the Baltic Region (Popcycling-Baltic project) Contract No. ENV4-CT96-0214. CD-Rom.Google Scholar
  38. Pacyna, J. M., Breivik, K., Münch, J., & Fudala, J. (2003). European atmospheric emissions of selected persistent organic pollutants, 1970–1995. Atmospheric Environment, 37(Supplement No. 1), S119–S131.CrossRefGoogle Scholar
  39. Parma Z., Vosta J., Horejs J., Pacyna J.M., Thomas, D. (1995). Atmospheric emission inventory guidelines for persistent organic pollutants (POPs). Report for External Affairs Canada, Prague. The Czech Republic. Cited in Pacyna et al. (2003).Google Scholar
  40. Pedersen, D. U., Durant, J. L., Penman, B. W., Crespi, C. L., Hemond, A. F., Lafleur, A. L., et al. (2004). Human cell mutagens in respirable airborn particles from the Northeastern United States. 1. Mutagenicity of fractionated samples. Environmental Science & Technology, 38, 682–689.CrossRefGoogle Scholar
  41. Pedersen, D. U., Durant, J. L., Taghizadeh, K., Hemond, H. F., Lafleur, A. L., & Cass, G. R. (2005). Human cell mutagens in respirable airborn particles from the northeastern United States. 2. Quantification of mutagens and other organic compounds. Environmental Science & Technology, 39, 9547–9560.CrossRefGoogle Scholar
  42. Prevedouros, K., Palm-Cousins, A., Gustafsson, Ö., & Cousins, I. T. (2008). Development of a black carbon-inclusive multi-media model: application for PAHs in Stockholm. Chemosphere, 70(1008), 607–615.CrossRefGoogle Scholar
  43. Ravindra, K., Sokhi, R., & van Grieken, R. (2008a). Atmospheric polycyclic armonatic hydrocarbons: source attribution, emission factors and regulations. Atmospheric Environment, 42(2008), 2895–2921.CrossRefGoogle Scholar
  44. Ravindra, K., Wauters, E., & van Grieken, R. (2008b). Variation in particulate PAH levels and their relation with the transboundary movement of the air masses. Science of the Total Environment, 396, 100–110.CrossRefGoogle Scholar
  45. Redmond, C.K. (1976) Epidemiological studies of cancer mortality in Coke plant workers. AMRL-TR-76-125. In Seventh Conference on Environmental Toxicology, Washington, pp. 93–107, Paper No 3 (cited in WHO, 1987).Google Scholar
  46. Rockel, B., & Geyer, B. (2008). The performance of the regional climate model CLM in different climate regions, based on the example of precipitation. Meteorologische Zeitschrift Band 17(4), 487–498Google Scholar
  47. Rockel, B., Will, A., Hense, A. (2008). The Regional Climate Model COSMO-CLM (CCLM), Meteorologische Zeitschrift Band 17(4), 347–248Google Scholar
  48. RVIM (Dutch National Institute of Public Health and the Environment) (1999). Environmental risk limits in the Netherlands. Report no. 60164 001.Google Scholar
  49. Scheringer, W., Hungerbühler, K., & Matthies, M. (2001). The spatial scale of organic chemicals in multimedia fate modelling. Recent developments and significance for chemical assessment. Environmental Science and Pollution Research, 8, 150–155.CrossRefGoogle Scholar
  50. Sehili, A. M., & Lammel, G. (2007). Global fate and distribution of polycyclic aromatic hydrocarbons emitted from Europe and Russia. Atmospheric Environment, 41, 8301–8315.CrossRefGoogle Scholar
  51. Shatalov,V., Gusev, A., Dutchak, S., Rozovskaya, O., Sokovykh, V., Vulykh, N., Aas, W., Breivik, K.,(2010). Persistent organic pollutants in the environment. MSC-E Status Report 3/2010. Meteorological Synthesizing Centre–East: Moscow, Russia.Google Scholar
  52. Shatalov, V., Gusev, A., Dutchak, S., Holoubek, I., Mantseva, E., Rozovskaya, O., Sweetman, A., Strukov, B., Vulykh, N. (2005). Modelling of POP contamination in European region: evaluation of the model performance. MSC-E Technical Report 7/2005. Meteorological Synthesizing Centre–East: Moscow, Russia.Google Scholar
  53. Tarrasón, L., Gusev, A. (2008). Towards the development of a common EMEP global modelling framework. EMEP/MSC-E Technical Report 1/2008. Meteorological Synthesizing Centre–East: Moscow, Russia.Google Scholar
  54. UNECE (1998). Convention on long-range transboundary air pollution. The 1998 Aarhus Protocol on Persistent Organic Pollutants (POPs). Available online:
  55. Van Velthoven, P. F. J. (1996). Estimates of stratosphere–troposphere exchange: sensitivity to model formulation and horizontal resolution. Journal of Geophysical Research-Atmospheres, 101, 1429.CrossRefGoogle Scholar
  56. Webdab, 2011: Online resource: Accessed Aug 2011.
  57. WG-PAH (Working Group on Polycyclic Aromatic Hydrocarbons), (2001). Ambient air pollution by polycyclic aromatic hydrocarbons (PAH). Position paper, European Communities. Luxembourg, Belgium. ISBN 92-894-2057-XGoogle Scholar
  58. WHO (World Health Organization). (1987). Air Quality Guidelines for Europe, WHO Regional Publications, European Series No 23. Copenhagen: WHO Regional Office for Europe.Google Scholar
  59. WHO (World Health Organization). (2000). Air Quality Guidelines for Europe, 2nd edn, WHO Regional Publications, European Series No 91. Copenhagen: WHO Regional Office for Europe.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Johannes Bieser
    • 1
    • 2
    Email author
  • Armin Aulinger
    • 1
  • Volker Matthias
    • 1
  • Markus Quante
    • 1
    • 2
  1. 1.Institute of Coastal ResearchHelmholtz-Zentrum GeesthachtGeesthachtGermany
  2. 2.Institute of Environmental ChemistryLeuphana University LüneburgLüneburgGermany

Personalised recommendations