Water, Air, & Soil Pollution

, Volume 223, Issue 2, pp 617–624 | Cite as

Comparative Study of Lead Accumulation in Different Organs of the Freshwater Crab Zilchiopsis oronensis

  • Ana María Gagneten
  • Georgina Tumini
  • Alba Imhof
  • Susana Gervasio


Lead (Pb) is known as an important aquatic contaminant with different toxic effects on various organisms. Until now, only few quantitative investigations have been published comparing Pb content in different organs of adult freshwater crabs. Their capacity to bioaccumulate other heavy metals is already known, and they can potentially transfer Pb to the terrestrial systems, as they are frequent trophic items of reptiles and birds, even humans. The objectives of this study were to assess Pb accumulation in the gills, carapace, digestive gland, and quela muscle of the freshwater crab Zilchiopsis oronensis, and to correlate bioaccumulation with morphometric data and sex. The crabs were manually caught in unpolluted ponds of the middle Paraná River alluvial valley (Santa Fe, Argentina). After the acclimation period, they were individually and randomly exposed per quadruplicate to three Pb experimental doses: 20, 40, and 80 mg Pb/L, in plastic cages during 15 days. After dissecting the crabs, the tissues were analyzed for lead in a Perkin Elmer Analyst 800 atomic absorption spectrometer. We found significant differences (p < 0.05) between the control and each one of the treatments but not between treatments (p > 0.05) and highly significant differences (p < 0.0001) between Pb concentration in organs. The Tukey posttest showed significant differences (p < 0.05) between gills–carapace, gills–digestive gland, and gills–quela muscle. The weight of the crabs only showed a negative correlation with Pb in the quela muscle (r = −0.53; p = 0.03). Pb in the carapace (but not in the other tissues) was positively correlated with the width (p = 0.571) and length (p = 0.616). Males accumulated more Pb than females, though not significantly. The present paper is aimed to contribute to our knowledge on Pb accumulation in freshwater crabs and select the better indicator organisms for biomonitoring.


Heavy metals Lead accumulation Freshwater crabs Zilchiopsis oronensis 



This research was supported by grants from the Universidad Nacional del Litoral, Santa Fe, Argentina (Project CAI+D 2009 no. PI 69–351) and from the Provincia de Santa Fe (Project SECTEI no. 21-10-24).


  1. Amado, M., Freire, C. A., & Souza, M. M. (2006). Osmoregulation and tissue water regulation in the freshwater red crab Dilocarcinus pagei (Crustacea, Decapoda), and the effect of waterborne inorganic lead. Aquatic Toxicology, 79, 1–8.CrossRefGoogle Scholar
  2. Amado, E.M., Freire, C.A., Souza, M.M. (2009). Viabilidade celular e fenotipo mxr em branquias de crustácos diante de exposicao ao chumbo. IX Congreso SETAC LA Y II SETAC Perú.Google Scholar
  3. Amín, O., Rodríguez, E., Hernando, M., Comoglio, L., López, L., & Medesani, D. (1998). Effects of lead and cadmiun on hatching of the southern king crab Lithodes santolla (Decapoda, Anomura). Invertebrates Reproduction and Development, 33, 81–85.CrossRefGoogle Scholar
  4. Barata, R., Bair, D. J., Nogueira, A. J. A., Soares, A. M. V. M., & Riva, M. C. (2006). Toxicity of binary mixtures of metals and pyrethroid insecticides to Daphnia magna Straus. Implications for multi-substance risks assessment. Aquatic Toxicology, 781, 1–14.CrossRefGoogle Scholar
  5. Buikema, A. L., Jr., Niedertehner, R. R., & Cairns, J., Jr. (1982). Biological monitoring part IV—toxicity testing. Water Research, 16, 239–262.CrossRefGoogle Scholar
  6. Burgos, M. G., & Rainbow, P. S. (1998). Uptake, accumulation and excretion by Corophium volutator (Crustacea: Amphipoda) of zinc, cadmium and cobalt added to sewage sludge. Eastern Coastal Shelf Science, 47, 603–620.CrossRefGoogle Scholar
  7. Collins, P. A., Williner, V., & Giri, F. (2002). A new distribution record for Zilchiopsis oronensis (Pretzmann, 1968) (Decapoda, Trichodactylidae) in Argentina. Crustaceana, 75(7), 931–934.CrossRefGoogle Scholar
  8. Dias Correa, J., Ramos da Silva, M., Bastos da Silva, A. C., Araujo de Lima, S. M., Malm, O., & Alodi, S. (2005). Tissue distribution, subcelular localization and endocrine disruption patterns induced by Cr and Mn in the crab, Ucides cordatus. Aquatic Toxicology, 73, 139–154.CrossRefGoogle Scholar
  9. Dziock, F., Henle, K., Foeckler, F., Follner, K., & Scholz, M. (2006). Biological indicator systems in floodplains—a review. International Review of Hydrobiology, 91, 271–291.CrossRefGoogle Scholar
  10. Engel, D. W., Brouwer, M., & Mercaldo-Allen, R. (2001). Effects of molting and environmental factors on trace metal body-burdens and hemocyanin concentrations in the American lobster, Homarus americanus. Marine Environmental Research, 52, 257–269.CrossRefGoogle Scholar
  11. Ferrer, L., Andrade, S., Asteasuain, R., & Marcovecchio, J. (2006). Acute toxicities of four metals on the early life stages of the crab Chasmagnathus granulata from Bahıa Blanca estuary, Argentina. Ecotoxicology and Environmental Safety, 65, 209–217.CrossRefGoogle Scholar
  12. Ferreyra, H., Romano, M., & Uhart, M. (2009). Recent and chronic exposure of wild ducks to lead in human-modified wetlands in Santa Fe Province, Argentina. Journal of Wildlife Diseases, 45(3), 823–827.Google Scholar
  13. Gagneten, A. M., & Paggi, J. C. (2009). Effects of heavy metal contamination (Cr, Cu, Pb, Cd) and eutrophication on zooplankton in the lower basin of the Salado River (Argentina). Water, Air, and Soil Pollution, 198, 1–4.CrossRefGoogle Scholar
  14. Gagneten, A. M., Gervasio, S., & Paggi, J. C. (2007). Heavy metal pollution and eutrophication in the Lower Salado River Basin (Argentina). Water, Air, and Soil Pollution, 178, 335–349.CrossRefGoogle Scholar
  15. Gagneten, A. M., Imhof, A., & Gervasio, S. (2008). Accumulation and elimination of Cr in gills and eggs by the freshwater crab Zilchiopsis collastinensis after experimental exposure. Fresenius Environmental Bulletin, 17(2), 182–187.Google Scholar
  16. Gagneten, A. M., Plá, R. R., Regaldo, L., & Paggi, J. C. (2009). Assessment of bioconcentration factor of chromium by Instrumental Neutron Activation Analysis in Argyrodiaptomus falcifer Daday, a subtropical freshwater copepod. Water, Air, and Soil Pollution, 204, 133–138.CrossRefGoogle Scholar
  17. Gopalakrishnan, S., Thilagam, H., & Vivek Raja, P. (2008). Comparison of heavy metal toxicity in life stages (espermiotocity, egg toxicity, embryotoxicity and larvae toxicity) of Hydroides elegans. Chemosphere, 71, 515–528.CrossRefGoogle Scholar
  18. Grupo Infostat (2008). Manual de Usuario InfoStat version 2008, FCA. Universidad Nacional de Córdoba. Primera Edición, Editorial Brujas, Argentina.Google Scholar
  19. Harris, R., & Santos, M. (2000). Heavy metal contamination and physiological variability in the Brazilian mangrove crabs Ucides cordatus and Callinectes danae (Crustacea: Decapoda). Marine Biology, 137, 691–703.CrossRefGoogle Scholar
  20. Keselman, D. (2002). Efectos del plomo sobre la embriogénesis y la eclosión larval de Chasmagnatus granulata (Decapoda, Brachyura). Tesis de Licenciatura en Ciencias Biológicas, Universidad de Concepción, Concepción, pp. 89.Google Scholar
  21. Macdonald, J. M., Shields, J. D., & Zimmer-Faust, R. K. (1988). Acute toxicities of eleven metals to early live-history stages of the yellow crab, Cancer anthonyi. Marine Biology, 98, 201–207.CrossRefGoogle Scholar
  22. Magalhàes, C., & Türkay, M. (1996). Taxonomy of the neotropical freshwater crab family Trychodactylidae. II The genera Fosteria, Melocarcinus, Sylviocarcinus, and Zilchiopsis (Crustacea: Decapoda: Brachyura). Frankfurt am Main, 30.1. Senckenbergiana Biologica, 75(1–2), 97–130.Google Scholar
  23. Martín, M., Osborn, K., Billig, P., & Glickstein, N. (1981). Toxicities of ten metals to Crassostrea gigas and Mytilus edulis embryos and Cancer magister larvae. Marine Pollution Bulletin, 2, 305–308.CrossRefGoogle Scholar
  24. Mateo, R., Martlnez-Vilalta, A., & Guitart, R. (1997). Lead shot pellets in the Ebro Delta, Spain: densities in sediments and prevalence of exposure in waterfowl. Environmental Pollution, 96(3), 335–341.CrossRefGoogle Scholar
  25. Mayer, F., Versteeg, D., McKee, M., Folmar, L., Graney, R., McCume, D., et al. (1992). Physiological and nonspecific biomarkers. In R. J. Hugget, R. A. Kimerle, P. M. Mehrle, & H. L. Bergman (Eds.), Biomarkers: biochemical, physiological and histological markers of anthropogenic stress (pp. 1–13). Boca Raton: Lewis.Google Scholar
  26. McDaniels, J. R. (1991). Sample preparation for spectrochemical determination of total recoverable elements in biological tissues. Method 200.3, Revision 1.0, 28 U.S. EPA, Cincinatti.Google Scholar
  27. Müller, G. (1981). Die Schwermetallbelastung der Sedimente des Neckars und seiner Nebenflusse: Cine Bestandsaufnahme. Chemiker-Zeitung, 105, 157–164.Google Scholar
  28. Pastor, A., Medina, J., Del Ramo, J., Torreblanca, A., Díaz-Mayans, J., & Hernandez, F. (1988). Determination of lead in treated crayfish Procambarus clarkii: Accumulation in different tissues. Bulletin of Environmental Contamination and Toxicology, 41, 412–418.CrossRefGoogle Scholar
  29. Pérez-Coll, C., & Herkovitz, J. (1990). Stage dependent susceptibility to lead in Bufo arenarum embryos. Environmental Pollution, 63, 239–245.CrossRefGoogle Scholar
  30. Rainbow, P. (1993). The significance of trace metals concentrations in marine invertebrates. In Dallinger (Ed.), En: ecotoxycology of metals in invertebrates (pp. 3–23). Lewis: R; Rainbow.P.S.Google Scholar
  31. Rainbow, P. (2007). Trace metal bioaccumulation: models, metabolic availability and toxicity. Environment International, 33, 576–582.CrossRefGoogle Scholar
  32. Reddy, P., & Figerman, M. (1995). Effect of cadmium chloride on physiological color changes of the fiddler crab, Uca pugilator. Ecotoxicology and Environmental Safety, 31, 69–75.CrossRefGoogle Scholar
  33. Sures, B. (2004). Environmental parasitology: relevancy of parasites in monitoring environmental pollution. Trends in Parasitology, 20(4), 170–177.CrossRefGoogle Scholar
  34. Sures, B. (2008). Host–parasite interactions in polluted environments. Journal of Fish Biology, 73, 2133–2142.CrossRefGoogle Scholar
  35. Sures, B., Taraschewski, H., & Jackwerth, E. (1994). Comparative study of lead accumulation in different organs of Perch (Perca fluviatilis) and its intestinal parasite Acanthocephalus lucii. Environmental Contamination and Toxicology, 52, 269–273.CrossRefGoogle Scholar
  36. Sures, B., Scjeible, T., Bashtar, A. R., & Taraschewski, H. (2003). Lead concentrations in Hymenolepis diminuta adults and Taenia taeniaeformis larvae compared to their rat hosts (Rattus norvegicus) sampled from the city of Cairo, Egypt. Parasitology, 127, 483–487.CrossRefGoogle Scholar
  37. Tulasi, S. J., Yasmeen, R., Paelrnaga, R. C., & Ramana Rao, J. V. (1987). Lead uptake and lead loss in the freshwater field crab, Barytelphusa guerini, on exposure to organic and inorganic lead. Bulletin of Environmental Contamination and Toxicology, 39, 63–68.CrossRefGoogle Scholar
  38. Vázquez, F. J. (2005). Toxicidad comparada de Zinc, Plomo y Mercurio para Zoea I de Chasmagnathus granulatus (Brachyura) Tesina de Licenciatura en Ciencias Biológicas Facultad de Ciencias Exactas y Naturales No. 110. Universidad de Belgrano. pp. 29.Google Scholar
  39. Vogt, G. (1996). Morfology and fisiology of digestive epithelia in Decapod crustaceans. European Journal of Physiology, 431, 239–240.CrossRefGoogle Scholar
  40. Wei, L., Grupta, P., Hernandez, R., & Farjat, F. (1999). Determination of ultratrace selenium and arsenic at part-per-trillon levels in environmental and biological samples by atomic flourescence spectrometry with flow inyection hydride generation technique. Michochemical Journal, 62, 83–98.CrossRefGoogle Scholar
  41. Widmeyer, J. R., & Bendell-Young, L. I. (2008). Heavy metals in suspended sediments, Crassostreas gigas, and the risk to humans. Archives of Environmental Contamination and Toxicology, 55, 442–450.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Ana María Gagneten
    • 1
  • Georgina Tumini
    • 1
  • Alba Imhof
    • 1
  • Susana Gervasio
    • 2
  1. 1.Facultad de Humanidades y Ciencias, Laboratorio de EcotoxicologíaUniversidad Nacional del LitoralSanta FeArgentina
  2. 2.INTEC–CONICETSanta FeArgentina

Personalised recommendations