Water, Air, & Soil Pollution

, Volume 223, Issue 2, pp 591–598 | Cite as

Evaluation of Non-Conventional Coagulants to Remove Turbidity from Water

  • R. Devesa-Rey
  • G. Bustos
  • J. M. Cruz
  • A. B. Moldes


Coagulation and flocculation are basic chemical engineering operations employed to remove suspended solids from water. The growing concern for environmental and ecological issues warrants the use of the biodegradable flocculants in wastewater and industrial effluent treatment. In this work, unconventional coagulant, namely lactic acid, calcium lactate, sodium lactate, and citric acid were studied in comparison with AlCl3, a usual coagulant widely employed to remove water turbidity. It was observed that lactic acid and calcium lactate were able to reduce the water turbidity similarly to AlCl3. This fact can be very interesting because lactic acid salts can be produced by biotechnological process, and contrarily to aluminium salts, they are biodegradable, reducing the risk for human and animal’s health.


Total suspended solids Coagulation Flocculation Lactic acid Calcium lactate 



Rosa Devesa-Rey gratefully acknowledges the financial support from the Ángeles Alvariño Program and financial support of the Xunta de Galicia.


  1. Aly, S. M., & Letey, J. (1990). Physical properties of sodium-treated soil as affected by two polymers. Soil Science Society American Journal, 54(2), 501–504.CrossRefGoogle Scholar
  2. Aly, S. M., & Letey, J. (1988). Polymer and water quality effects on flocculation of montmorillonite. Soil Science Society American Journal, 52(5), 1453–1458.CrossRefGoogle Scholar
  3. Ben-Hur, M., & Keren, R. (1997). Polymer effects on water infiltration and soil aggregation. Soil Science Society American Journal, 61(2), 565–570.CrossRefGoogle Scholar
  4. Black, A., & Harris, R. (1969). New dimensions for the old jar test. Engineering: Water Wastes. 49.Google Scholar
  5. Bowers, D. G., Evans, D., Thomas, D. N., Ellis, K., Williams, P. J., & Le, B. (2004). Interpreting the colour of an estuary. Estuarine Coastal and Shelf Science, 59(1), 13–20.CrossRefGoogle Scholar
  6. Bustos, G., de la Torre, N., Moldes, A. B., Cruz, J. M., & Domínguez, J. M. (2007). Revalorization of hemicellulosic trimming vine shoots hydrolyzates through continuous production of lactic acid and biosurfactants by L.pentosus. Journal of Food Engineering, 78(2), 405–412.CrossRefGoogle Scholar
  7. Bustos, G., Moldes, A. B., Cruz, J. M., & Dominguez, J. M. (2005). Influence of the metabolism pathway on lactic acid production from hemicellulosic trimming vine shoots hydrolyzates using L. pentosus. Biotechnology Progress, 21(3), 793–798.CrossRefGoogle Scholar
  8. Bustos, G., Moldes, A. B., Cruz, J. M., & Dominguez, J. M. (2004). Production of fermentable media from trimming wastes and bioconversion into lactic acid by Lactobacillus pentosus. Journal of the Science of Food and Agriculture, 84(15), 2105–2112.CrossRefGoogle Scholar
  9. Devesa-Rey, R., Moldes, A. B., Díaz-Fierros, F., & Barral, M. T. (2008a). Toxicity of Anllóns River sediment extracts using microtox and the zucconi phytotoxicity test. Bulletin of Environmental Monitoring and Assessment, 80, 225–230.Google Scholar
  10. Devesa-Rey, R., Iglesias, M. L., Díaz-Fierros, F., & Barral, M. T. (2008b). Fractionation and bioavailability of arsenic in the bed sediments of the Anllóns River (NW Spain). Water, Air, and Soil Pollution, 200, 341–352.CrossRefGoogle Scholar
  11. Devesa-Rey, R., Iglesias, M. L., Díaz-Fierros, F., & Barral, M. T. (2009). Total phosphorous distribution and bioavailability in the bed sediments of an Atlantic basin (Galicia, NW Spain): Spatial distribution and vertical profiles. Water, Air, and Soil Pollution, 200, 341–352.CrossRefGoogle Scholar
  12. Devesa-Rey, R., Barral, M. T., Jouanneau, J.-M., & Díaz-Fierros, F. (2010a). Analysis of the degree of contamination and evolution in the last 100 years of the composition of the bed sediments of the Anllóns Basin. Environmental Earth Sciences, 61(7), 1401–1417.CrossRefGoogle Scholar
  13. Devesa-Rey, R., Díaz-Fierros, F., & Barral, M. T. (2010b). Trace metals in river bed sediments: An assessment of their partitioning and bioavailability by using multivariate exploratory analysis. Journal of Environmental Management, 91, 2471–2477.CrossRefGoogle Scholar
  14. Droppo, I. G., Nackaerts, K., Walling, D. E., & Williams, N. (2005). Can flocs and water stable soil aggregates be differentiated within fluvial systems? Catena, 60(1), 1–18.CrossRefGoogle Scholar
  15. El Samrani, A. G., Lartiges, B. S., Montarges-Pelletier, E., Kazpard, V., Barres, O., & Ghanbaja, J. (2004). Clarification of municipal sewage with ferric chloride: The nature of coagulant species. Water Research, 38, 756–768.CrossRefGoogle Scholar
  16. Green, V. S., Stott, D. E., Norton, L. D., & Graveel, J. G. (2000). Polyacrylamide molecular weight and charge effects on infiltration under simulated rainfall. Soil Science Society American Journal, 64(5), 1786–1791.CrossRefGoogle Scholar
  17. Guitián, F., & Carballas, T. (1976). Técnicas de Análisis de Suelos. Santiago de Compostela, Spain: Pico Sacro Ed.Google Scholar
  18. Helalia, A. M., & Letey, J. (1988). Polymer type and water quality effects on soil dispersion. Soil Science Society American Journal, 52, 243–246.CrossRefGoogle Scholar
  19. Igwe, C. A., Zarei, M., & Stahr, K. (2009). Colloidal stability in some tropical soils of southeastern Nigeria as affected by iron and aluminium oxides. Catena, 77(3), 232–237.CrossRefGoogle Scholar
  20. Khiari, R., Dridi-Dhaouadi, S., Aguir, C., & Mhenni, M. F. (2010). Experimental evaluation of eco-friendly flocculants prepared from date palm rachis. Journal of Environmental Sciences, 22(10), 1539–1543.CrossRefGoogle Scholar
  21. Laird, D. A. (1997). Bonding between polyacrylamide and clay mineral surfaces. Soil Science, 162(11), 826–832.CrossRefGoogle Scholar
  22. Lavoie, A., de la Noue, J., & Serodes, J. B. (1984). Recovery of microalgae in wastewater: A comparative study of different flocculating agents. Canadian Journal of Civil Engineering, 11(2), 266–272.CrossRefGoogle Scholar
  23. Malik, M., Amrhein, C., & Letey, J. (1991). Polyacrylamide to improve water flow and salt removal in a high shrink-swell soil. Soil Science Society American Journal, 55(6), 1664–1667.CrossRefGoogle Scholar
  24. Moldes, A. B., Torrado, A. M., Barral, M. T., & Domínguez, J. M. (2007). Evaluation of biosurfactant production from various agricultural residues by Lactobacillus pentosus. Journal of Agricultural and Food Chemistry, 55(11), 4481–4486.CrossRefGoogle Scholar
  25. Murphy, J., & Riley, J. (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27, 31–36.CrossRefGoogle Scholar
  26. Nacheva, P. M., Bustillos, L. T., Camperos, E. R., Armenta, S. L., & Vigueros, L. C. (1996). Characterization and coagulation-flocculation treatability of Mexico City wastewater applying ferric chloride and polymers. Water Science and Technology, 34, 235–247.Google Scholar
  27. RD 140/2003, 7th February, establishing health criteria for the quality of drinking water (in Spanish). Spanish Official Bulletin, 45, 7228-7245 (Reference BOE-A-2003-3596).Google Scholar
  28. RD 1620/2007, 7th December, establishing the legal framework for the reuse of treated water (in Spanish). Spanish Official Bulletin, 294, 50369-50661 (Reference BOE-A-2007-21092)Google Scholar
  29. Reynolds, T.D. & Richards, P.A. (1995). Coagulation and Flocculation; Unit Operations & Processes in Environmental Engineering; 2nd Ed.; PWS Publ.; Chapter 8, 194–204.Google Scholar
  30. Rishel, K. L., & Ebeling, J. M. (2006). Screening and evaluation of alum and polymer combinations as coagulation/flocculation aids to treat effluents from intensive aquaculture systems. Journal World Aquaculture Society, 37(2), 191–199.CrossRefGoogle Scholar
  31. Salehizadeh, H., & Shojaosadati, S. A. (2002). Isolation and characterization of a bioflocculant produced by Bacillus firmus. Biotechnology Letters, 24, 35–40.CrossRefGoogle Scholar
  32. Sojka, R. E., Lentz, R. D., & Westermann, D. T. (1998). Water and erosion management with multiple applications of polyacrylamide in furrow irrigation. Soil Science Society American Journal, 62(6), 1672–1680.CrossRefGoogle Scholar
  33. Stross, R. G., & Sokol, R. C. (1989). Runoff and flocculation modify underwater light environment of the Hudson River Estuary. Estuarine Coastal and Shelf Science, 29(4), 305–316.CrossRefGoogle Scholar
  34. Urik, M., Littera, P., Ševc, J., Kolenčik, M., & Čerňanský, S. (2009). Removal of arsenic (V) from aqueous solutions using chemically modified sawdust of spruce (Picea abies): Kinetics and isotherm studies. International journal of Environmental Science and Technology, 6(3), 451–456.Google Scholar
  35. Vasudevan, S., Kannan, B. S., Lakshmi, J., Mohanraj, S., & Sozhan, G. (2011). Effects of alternating and direct current in electrocoagulation process on the removal of fluoride from water. Journal of Chemical Technology and Biotechnology, 86(3), 428–436.CrossRefGoogle Scholar
  36. Vasudevan, S., Lakshmi, J., Jayaraj, J., & Sozhan, G. (2009). Remediation of phosphate-contaminated water by electrocoagulation with aluminium, aluminium alloy and mild steel anodes. Journal of Hazardous Materials, 164(2–3), 1480–1486.CrossRefGoogle Scholar
  37. Zhang, X. C., & Miller, W. P. (1996). Polyacrylamide effect on infiltration and erosion in furrows. Soil Science Society American Journal, 60(3), 866–872.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • R. Devesa-Rey
    • 1
  • G. Bustos
    • 2
  • J. M. Cruz
    • 1
  • A. B. Moldes
    • 1
  1. 1.Departamento Ingeniería Química, E.T.S. Ingenieros Industriales. Campus As Lagoas, MarcosendeUniversidad de VigoVigoSpain
  2. 2.Unidad Académica Multidisciplinaria de Mante, Área de Ingeniería Bioquímica IndustrialUniversidad Autónoma de TamaulipasManteMexico

Personalised recommendations