Water, Air, & Soil Pollution

, Volume 223, Issue 1, pp 63–72 | Cite as

The Effects of Soil Amendments on the Growth of Atriplex halimus and Bituminaria bituminosa in Heavy Metal-Contaminated Soils

  • Domingo Martínez-Fernández
  • David J. WalkerEmail author


In Southern Spain, as in other semi-arid zones, plants used for the phytoremediation of heavy metal-contaminated sites must be able to withstand not only the challenging soil conditions but also seasonal drought and high temperatures. A pot assay was carried out to determine the ability of soil amendments to promote the survival and growth of the seedlings of two native species, Atriplex halimus L. (Amaranthaceae) and Bituminaria bituminosa (L.) C.H. Stirton (Fabaceae), in two heavy metal-contaminated soils, one of which also had a high level of arsenic (As). Restriction of A. halimus shoot growth in the non-amended soils appeared to be due to deficiency of nitrogen, phosphorus (P) and potassium (K) and in the more highly contaminated soil to lead (Pb) toxicity. Shoot biomass of A. halimus in the more highly contaminated soil was increased significantly by compost addition, due to increased uptake of K and P and decreased tissue Pb. The lack of effect of compost on B. bituminosa growth in this soil, despite a large increase in tissue K, may have been due to elevated tissue levels of As and Pb and the high soil salinity. The combination of A. halimus and compost addition seems appropriate for the phytostabilisation of contaminated semi-arid sites.


Atriplex Bituminaria Compost Heavy metals Phytoremediation 



We thank Roberto Pérez Alcaraz-Pérez (IMIDA) for technical assistance and Tania Pardo (CEBAS-CSIC, Murcia, Spain) for analysis of the compost and pig slurry. This work was funded by project CTM2007-66401-C02-01 of the Ministerio de Ciencia e Innovación (Spain). Half of David Walker’s salary is paid by the European Union via European Social Funds.


  1. Balsberg Påhlsson, A. M. (1989). Toxicity of heavy metals (Zn, Cu, Cd, Pb) to vascular plants. Water, Air, and Soil Pollution, 47, 287–319.CrossRefGoogle Scholar
  2. Bernal, M. P., Clemente, R., & Walker, D. J. (2007). The role of organic amendments in the bioremediation of heavy metal-polluted soils. In R. B. Gore (Ed.), Environmental Research at the Leading Edge (pp. 1–57). New York: Nova.Google Scholar
  3. Bernal, M. P., Clemente, R., & Walker, D. J. (2009). Interactions of heavy metals with soil organic matter in relation to phytoremediation. In J. P. Navarro-Aviño (Ed.), Phytoremediation: The Green Salvation of the World (pp. 109–129). Trivandrum: Research Signpost.Google Scholar
  4. Bernal, M. P., Navarro, A. F., Sánchez-Monedero, M. A., Roig, A., & Cegarra, J. (1998). Influence of sewage sludge compost stability and maturity on carbon and nitrogen mineralization in soil. Soil Biology and Biochemistry, 30, 305–313.CrossRefGoogle Scholar
  5. Cao, X., Ma, L. Q., Chen, M., Singh, S. P., & Harris, W. G. (2002). Impacts of phosphate amendments on lead biogeochemistry at a contaminated site. Environmental Science & Technology, 36, 5296–5304. doi: 10.1021/es020697j.CrossRefGoogle Scholar
  6. Carbonell-Barrachina, A. A., Burló, F., Valero, D., López, E., Martínez-Romero, D., & Martínez-Sánchez, F. (1999). Arsenic toxicity and accumulation in turnip as affected by arsenic chemical speciation. Journal of Agricultural and Food Chemistry, 47, 2288–2294.CrossRefGoogle Scholar
  7. Cegarra, J., Alburquerque, J. A., Gonzálvez, J., Tortosa, G., & Chaw, D. (2006). Effects of the forced ventilation on composting of a solid olive-mill by-product (“alperujo”) managed by mechanical turning. Waste Management, 26, 1377–1383. doi: 10.1016/ Scholar
  8. Chaney, R. L. (1989). Toxic element accumulation in soils and crops: protecting soil fertility and agricultural food chains. In B. Bar-Yosef, N. J. Barrow, & J. Goldshmid (Eds.), Inorganic contaminants in the vadose zone (pp. 140–158). Heidelberg: Springer.CrossRefGoogle Scholar
  9. Clemente, R., Walker, D. J., & Bernal, M. P. (2005). Uptake of heavy metals and As by Brassica juncea grown in a contaminated soil in Aznalcóllar (Spain): The effect of soil amendments. Environmental Pollution, 138, 46–58. doi: 10.1016/j.envpol.2005.02.019.CrossRefGoogle Scholar
  10. Council of the European Communities. (1986). Directive of 12 of June on the protection of the environment, and in particular of the soil, when sewage sludge is used in agriculture. Official Journal of the European Community, L181, 6–12.Google Scholar
  11. Cox, M.C. (1995). Arsenic characterization in soil and arsenic effects on canola growth. Ph.D. dissertation. Baton Rouge, Louisiana: Louisiana State University.Google Scholar
  12. Davis, R. D., & Beckett, P. H. T. (1978). Upper critical levels of toxic elements in plants. II. Critical levels of copper in young barley, wheat, rape, lettuce and ryegrass, and of nickel and zinc in young barley and ryegrass. New Phytologist, 80, 23–32.CrossRefGoogle Scholar
  13. de la Fuente, C., Clemente, R., Martínez, J., & Bernal, M. P. (2010). Optimization of pig slurry application to heavy metal polluted soils monitoring nitrification processes. Chemosphere, 81, 603–610. doi: 10.1016/j.chemosphere.2010.08.026.CrossRefGoogle Scholar
  14. Fitz, W. J., & Wenzel, W. W. (2002). Arsenic transformations in the soil-rhizosphere-plant system: fundamentals and potential application to phytoremediation. Journal of Biotechnology, 99, 259–278. doi: 10.1016/s0168-1656(02)00218-3.CrossRefGoogle Scholar
  15. Hegazi, E. M., Wangberg, J. K., Goodin, J. R., & Northington, D. K. (1980). Field observations on arthropods associated with Atriplex halimus in Egypt. Journal of Arid Environments, 3, 305–308.Google Scholar
  16. Jeliazkova, E., Craker, L. E., & Xing, B. S. (2003). Seed germination of anise, caraway, and fennel in heavy metal contaminated solutions. Journal of Herbs, Spices & Medicinal Plants, 10, 83–93. doi: 10.1300/J044v10n03_09.CrossRefGoogle Scholar
  17. Kabata-Pendias, A. (2001). Trace elements in soils and plants (3rd ed.). Boca Raton: CRC.Google Scholar
  18. Lefèvre, I., Marchal G., Meerts, P., Correal, E., & Lutts, S. (2009). Chloride salinity reduces cadmium accumulation by the Mediterranean halophyte species Atriplex halimus L. Environmental and Experimental Botany, 65, 142–152. doi: 10.1016/j.envexpbot.2008.07.005.CrossRefGoogle Scholar
  19. Lutts, S., Lefèvre, I., Delpèrèe, C., Kivits, S., Deschamps, C., Robledo, A., et al. (2004). Heavy metal accumulation by the halophyte species Mediterranean saltbush. Journal of Environmental Quality, 33, 1271–1279.CrossRefGoogle Scholar
  20. Manousaki, E., & Kalogerakis, N. (2009). Phytoextraction of Pb and Cd by the Mediterranean saltbush (Atriplex halimus L.): metal uptake in relation to salinity. Environmental Science and Pollution Research, 16, 844–854. doi: 10.1007/s11356-009-0224-3.CrossRefGoogle Scholar
  21. Marqués, M. J., Jiménez, L., Pérez-Rodríguez, R., García-Ormaechea, S., & Bienes, R. (2005). Reducing water erosion in a gypsic soil by combined use of organic amendment and shrub revegetation. Land Degradation and Development, 16, 339–350. doi: 10.1002/ldr.658.CrossRefGoogle Scholar
  22. Marschner, H. (1995). Mineral nutrition of higher plants (2nd ed.). London: Academic.Google Scholar
  23. McLaughlin, M. J., Zarcinas, B. A., Stevens, D. P., & Cook, N. (2000). Soil testing for heavy metals. Communications in Soil Science and Plant Analysis, 31, 1661–1700.CrossRefGoogle Scholar
  24. Mendez, M. O., Glenn, E. P., & Maier, R. (2007). Phytostabilization potential of quailbush for mine tailings: growth, metal accumulation, and microbial community changes. Journal of Environmental Quality, 36, 245–253. doi: 10.2134/jeq2006.0197.CrossRefGoogle Scholar
  25. Mendez, M. O., & Maier, R. (2008). Phytostabilization of mine tailings in arid and semiarid environments – an emerging remediation technology. Environmental Health Perspectives, 116, 278–283. doi: 10.1289/ehp.10608.CrossRefGoogle Scholar
  26. Pang, J., Tibbett, M., Denton, M. D., Lambers, H., Siddique, K. H. M., Bolland, M. D. A., et al. (2010). Variation in seedling growth of 11 perennial legumes in response to phosphorus supply. Plant and Soil, 328, 133–143. doi: 10.1007/s11104-009-0088-9.CrossRefGoogle Scholar
  27. Probiogas project. Retrieved April 27, 2011, from
  28. Ramos, J., López, M. J., & Benlloch, M. (2004). Effect of NaCl and KCl salts on the growth and solute accumulation of the halophyte Atriplex nummularia. Plant and Soil, 259, 163–168.CrossRefGoogle Scholar
  29. Sardans, J., Peñuelas, J., Prieto, P., & Estiarte, M. (2008). Drought and warming induced changes in P and K concentration and accumulation in plant biomass and soil in a Mediterranean shrubland. Plant and Soil, 306, 261–271. doi: 10.1007/s11104-008-9583-7.CrossRefGoogle Scholar
  30. Soil Survey Staff. (2010). Keys to Soil Taxonomy (11th ed.). Washington, D.C.: USDA-Natural Resources Conservation Service.Google Scholar
  31. Walker, D. J., Bernal, M. P., & Correal, E. (2007). The influence of heavy metals and mineral nutrient supply on Bituminaria bituminosa. Water, Air, and Soil Pollution, 184, 335–345. doi: 10.1007/s11270-007-9422-0.CrossRefGoogle Scholar
  32. Walker, D. J., Clemente, R., & Bernal, M. P. (2004). Contrasting effects of compost and manure on the growth and uptake of heavy metals by Chenopodium album L. in a soil contaminated by pyritic mine waste. Chemosphere, 57, 215–224. doi: 10.1016/j.chemosphere.2004.05.020.CrossRefGoogle Scholar
  33. Walker, D. J., Clemente, R., Roig, A., & Bernal, M. P. (2003). The effects of soil amendments on heavy metal bioavailability in two contaminated Mediterranean soils. Environmental Pollution, 122, 303–312.CrossRefGoogle Scholar
  34. Walker, D. J., Moñino, I., & Correal, E. (2006). Genome size in Bituminaria bituminosa (L.) C.H. Stirton (Fabaceae) populations: separation of “true” differences from environmental effects on DNA determination. Environmental and Experimental Botany, 55, 258–265. doi: 10.1016/j.envexpbot.2004.11.005.CrossRefGoogle Scholar
  35. Walker, D. J., Moñino, I., González, E., Frayssinet, N., & Correal, E. (2005). Determination of ploidy and nuclear DNA content in populations of Atriplex halimus (Chenopodiaceae). Botanical Journal of the Linnean Society, 147, 441–448.CrossRefGoogle Scholar
  36. Walsh, L. M., Sumner, M. E., & Keeley, D. R. (1977). Occurrence and distribution of arsenic in soils and plants. Environmental Health Perspectives, 19, 67–71.CrossRefGoogle Scholar
  37. Wang, X. F., & Zhou, Q. X. (2005). Ecotoxicological effects of cadmium on three ornamental plants. Chemosphere, 60, 16–21. doi: 10.1016/j.chemosphere.2004.12.031.CrossRefGoogle Scholar
  38. Wild, A. (1988). Russell´s soil conditions and plant growth (11th ed.). London: Longman.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Domingo Martínez-Fernández
    • 1
  • David J. Walker
    • 1
    Email author
  1. 1.Departamento de Recursos NaturalesInstituto Murciano de Investigación y Desarrollo Agricola y AlimentarioLa AlbercaSpain

Personalised recommendations