Water, Air, & Soil Pollution

, Volume 222, Issue 1–4, pp 217–231

Lindane Biodegradation by Defined Consortia of Indigenous Streptomyces Strains

  • María Soledad Fuentes
  • Juliana María Sáez
  • Claudia Susana Benimeli
  • María Julia Amoroso
Article

Abstract

The current study aimed to compare lindane degradation by pure and mixed cultures of Streptomyces sp. Cell-free extracts were assayed for potentiating dechlorinase activity and, based on these results, consortia of two to six microorganisms were assayed for their growth on and degradation of lindane. Furthermore, the role of bacterial consortia of lindane-degrading strains was examined in lindane decontamination soil assays. Four actinobacteria, previously isolated from a pesticide-contaminated area, were selected because of their tolerance to lindane and their ability to use the pesticide as sole carbon source. These strains as well as Streptomyces sp. M7 and Streptomyces coelicolor A3 were used to study specific dechlorinase activity (SDA) and lindane removal in mixed cultures. Pure cultures presented SDA in the presence of 1.66 mg L-1 lindane as carbon source. SDA was improved by certain mixed cultures until 12 times compared with pure cultures. Mixed cultures with two, three, and four strains showed maximum lindane removal of 46% to 68%, whereas combinations of five and six strains did not efficiently remove the pesticide from the culture medium. The Streptomyces sp. A2, A5, M7, and A11 consortium presented the lowest ratio between residual lindane concentration and SDA and could be a promising tool for lindane biodegradation.

Keywords

Lindane Bioremediation Actinobacteria Microbial consortium 

References

  1. Assaf, N. A., & Turco, R. F. (1994). Accelerated biodegradation of atrazine by a microbial consortium is possible in culture and soil. Biodegradation, 5, 29–35.Google Scholar
  2. Bell, D. K., Wells, H. D., & Markham, C. R. (1980). In vitro antagonism of Trichoderma species against six fungal plant pathogens. Phytopathology, 72, 379–382.CrossRefGoogle Scholar
  3. Benimeli, C. S., Amoroso, M. J., Chaile, A. P., & Castro, R. G. (2003). Isolation of four aquatic streptomycetes strains capable of growth on organochlorine pesticides. Bioresource Technology, 89, 348–357.CrossRefGoogle Scholar
  4. Benimeli, C. S., Castro, G. R., Chaile, A. P., & Amoroso, M. J. (2006). Lindane removal induction by Streptomyces sp. M7. Journal of Basic Microbiology, 46, 348–357.CrossRefGoogle Scholar
  5. Benimeli, C. S., Castro, G. R., Chaile, A. P., & Amoroso, M. J. (2007). Lindane uptake and degradation by aquatic Streptomyces sp. strain M7. International Biodeterioration and Biodegradation, 59, 148–155.CrossRefGoogle Scholar
  6. Boltner, D., Moreno-Morillas, S., & Ramos, J. L. (2005). 16S rDNA phylogeny and distribution of lin genes in novel hexachlorocyclohexane degrading Sphingomonas strains. Environmental Microbiology, 7, 1329–1338.CrossRefGoogle Scholar
  7. Botella, B., Crespo, J., Rivas, A., Cerrillo, I., Olea-Serrano, M. F., & Olea, N. (2004). Exposure of women to organochlorine pesticides in Southern Spain. Environmental Research, 96, 34–40.CrossRefGoogle Scholar
  8. Brilhante, O. M., & Franco, R. (2006). Exposure pathways to HCH and DDT in Cidade dos Meninos and its surrounding districts of Amapa, Figueiras and Pilar, metropolitan regions of Rio de Janeiro, Brazil. International Journal of Environmental Health Research, 16, 205–217.CrossRefGoogle Scholar
  9. Carrillo-Pérez, E., Ruiz-Manríquez, A., & Yeomans-Reina, H. (2004). Aislamiento, identificación y evaluación de un cultivo mixto de microorganismos con capacidad para degradar DDT. Revista Internacional de Contaminación Ambiental, 20, 69–75.Google Scholar
  10. Cuozzo, S. A., Rollán, G. C., Abate, C. M., & Amoroso, M. J. (2009). Specific dechlorinase activity in lindane degradation by Streptomyces sp. M7. World Journal of Microbiology & Biotechnology, 25, 1539–1546.CrossRefGoogle Scholar
  11. De Schrijver, A., & De Mot, R. (1999). Degradation of pesticides by actinomycetes. Critical Reviews in Microbiology, 25, 85–119.CrossRefGoogle Scholar
  12. de Souza, M. L., Newcombe, D., Alvey, S., Crowley, D. E., Hay, A., Sadowsky, M. J., et al. (1998). Molecular basis of a bacterial consortium: Interspecies catabolism of atrazine. Applied and Environmental Microbiology, 64, 178–184.Google Scholar
  13. Dogra, C., Raina, V., Pal, R., Suar, M., Lal, S., Gartemann, K. H., et al. (2004). Organization of lin genes and IS6100 among different strains of hexachlorocyclohexanedegrading Sphingomonas paucimobilis: Evidence for horizontal gene transfer. Journal of Bacteriology, 186, 2225–2235.CrossRefGoogle Scholar
  14. Fuentes, M. S., Benimeli, C. S., Cuozzo, S. A., & Amoroso, M. J. (2010). Isolation of pesticide-degrading actinomycetes from a contaminated site: Bacterial growth, removal and dechlorination of organochlorine pesticides. International Biodeterioration and Biodegradation, 64, 434–441.CrossRefGoogle Scholar
  15. Guevara, C., & Zambrano, M. M. (2006). Sugarcane cellulose utilization by a defined microbial consortium. FEMS Microbiology Letters, 255, 52–58.CrossRefGoogle Scholar
  16. Hamer, G. (1997). Microbial consortia for multiple pollutant biodegradation. Pure and Applied Chemistry, 69, 2343–2356.CrossRefGoogle Scholar
  17. Herrero-Mercado, M., Waliszewski, S. M., Valencia-Quintana, R., Caba, M., Hernández-Chalate, F., García-Aguilar, E., et al. (2010). Organochlorine pesticide levels in adipose tissue of pregnant women in Veracruz, Mexico. Bulletin of Environmental Contamination and Toxicology, 84, 652–656.CrossRefGoogle Scholar
  18. Hirano, T., Ishida, T., Oh, K., & Sudo, R. (2007). Biodegradation of chlordane and hexachlorobenzenes in river sediment. Chemosphere, 67, 428–434.CrossRefGoogle Scholar
  19. Hopwood, D. A. (1967). Genetic analysis and genome structure in Streptomyces coelicolor. Bacteriological Reviews, 31, 373–403.Google Scholar
  20. Hubert, C. C., Shen, Y., & Voordouw, G. (1999). Composition of toluene-degrading microbial communities from soil at different concentrations of toluene. Applied and Environmental Microbiology, 65, 3064–3070.Google Scholar
  21. Johri, A. K., Dua, M., Saxena, D. M., & Sethunathan, N. (2000). Enhanced degradation of hexachlorocyclohexane isomers by Sphingomonas paucimobilis. Current Microbiology, 41, 309–311.CrossRefGoogle Scholar
  22. Karagouni, A. D., Vionis, A. P., Baker, P. W., & Wellington, E. M. H. (1993). The effect of soil moisture content on spore germination, mycelium development and survival of a seeded streptomycete in soil. Microbial Releases, 28, 47–51.Google Scholar
  23. Kumar, M., & Philip, L. (2007). Biodegradation of endosulfan-contaminated soil in a pilot-scale reactor-bioaugmented with mixed bacterial culture. Journal of Environmental Science and Health. Part B, 42, 707–715.CrossRefGoogle Scholar
  24. Lal, R., Dadhwal, M., Kumari, K., Sharma, P., Singh, A., Kumari, H., et al. (2008). Pseudomonas sp. to Sphingobium indicum: A journey of microbial degradation and bioremediation of hexachlorocyclohexane. Indian Journal of Microbiology, 48, 3–18.CrossRefGoogle Scholar
  25. Lal, R., Dogra, C., Malhotra, S., Sharma, P., & Pal, R. (2006). Diversity, distribution and divergence of lin genes in hexachlorocyclohexanedegrading sphingomonads. Trends in Biotechnology, 24, 121–130.CrossRefGoogle Scholar
  26. Lal, R., Pandey, G., Sharma, P., Kumari, K., Malhotra, S., Pandey, R., et al. (2010). Biochemistry of microbial degradation of hexachlorocyclohexane and prospects for bioremediation. Microbiology and Molecular Biology Reviews, 74, 58–80.CrossRefGoogle Scholar
  27. Liu, S. U., Freyer, A. J., & Bollag, J. M. (1991). Microbial dechlorination of the herbicide metolachlor. Journal of Agricultural and Food Chemistry, 39, 631–636.CrossRefGoogle Scholar
  28. MacNaughton, S. J., Stephen, J. R., Venosa, A. D., Davis, G. A., Chang, Y. J., & White, D. C. (1999). Microbial population changes during bioremediation of an experimental oil spill. Applied and Environmental Microbiology, 65, 3566–3574.Google Scholar
  29. Mandelbaum, R. T., Wackett, L. P., & Allan, D. L. (1993). Mineralization of the s-triazine ring of atrazine by stable bacterial mixed cultures. Applied and Environmental Microbiology, 59, 1695–1701.Google Scholar
  30. Manickam, N., Mau, M., & Schloemann, M. (2006). Characterization of the novel HCH-degrading strain Microbacterium sp. ITRC1. Applied Microbiology and Biotechnology, 69, 580–588.CrossRefGoogle Scholar
  31. Mohn, W. W., Mertens, B., Neufeld, J. D., Verstraete, W., & de Lorenzo, V. (2006). Distribution and phylogeny of hexachlorocyclohexane degrading bacteria in soils from Spain. Environmental Microbiology, 8, 60–68.CrossRefGoogle Scholar
  32. Nagata, Y., Endo, R., Itro, M., Ohtsubo, Y., & Tsuda, M. (2007). Aerobic degradation of lindane (γ-hexachlorocyclohexane) in bacteria and its biochemical and molecular basis. Applied Microbiology and Biotechnology, 76, 741–752.CrossRefGoogle Scholar
  33. Nagata, Y., Futamura, A., Miyauchi, K., & Takagi, M. (1999). Two different types of dehalogenases, Lin A and Lin B, involved in γ-hexachlorocyclohexane degradation in Sphingomonas paucimobilis UT26 are localized in the periplasmic space without molecular processing. Journal of Bacteriology, 181, 5409–5413.Google Scholar
  34. Phillips, T. M., Seech, A. G., Lee, H., & Trevors, J. T. (2001). Colorimetric assay for lindane dechlorination by bacteria. Journal of Microbiological Methods, 47, 181–188.CrossRefGoogle Scholar
  35. Phillips, T. M., Seech, A. G., Lee, H., & Trevors, J. T. (2005). Biodegradation of hexachlorocyclohexane (HCH) by microorganisms. Biodegradation, 16, 363–392.CrossRefGoogle Scholar
  36. Piñero González, M., Izquierdo Córser, P., Allara Cagnasso, M., & García Urdaneta, A. (2007). Residuos de plaguicidas organoclorados en 4 tipos de aceites vegetales. Archivos Latinoamericanos de Nutrición, 57, 397–401.Google Scholar
  37. Quintero, J. C., Moreira, M. T., Feijoo, G., & Lema, J. M. (2005). Anaerobic degradation of hexachlorocyclohexane isomers in liquid and soil slurry systems. Chemosphere, 61, 528–536.CrossRefGoogle Scholar
  38. Quintero, J. C., Moreira, M. T., Feijoo, G., & Lema, J. M. (2008). Screening of white rot fungal species for their capacity to degrade lindane and other isomers of hexachlorocyclohexane (HCH). Ciencia e Investigación Agraria, 35, 159–167.CrossRefGoogle Scholar
  39. Radosevich, M., Traina, S. J., Hao, Y. L., & Tuovinen, O. H. (1995). Degradation and mineralization of atrazine by a soil bacterial isolate. Applied and Environmental Microbiology, 61, 297–302.Google Scholar
  40. Shelton, D. R., Khader, S., Karns, J. S., & Pogell, B. M. (1996). Metabolism of twelve herbicides by Streptomyces. Biodegradation, 7, 129–136.CrossRefGoogle Scholar
  41. Singh, B. K., & Kuhad, R. C. (2000). Degradation of the insecticide lindane (γ-HCH) by white-rot fungi Cyathus bulleri and Phanerochaete sordida. Pest Management Science, 56, 142–146.CrossRefGoogle Scholar
  42. Singh, A., & Lal, R. (2009). Sphingobium ummariense sp. nov., a novel hexachlorocyclohexane degrading bacterium, isolated from HCH contaminated soil. International Journal of Systematic and Evolutionary Microbiology, 59, 162–166.CrossRefGoogle Scholar
  43. Siripattanakul, S., Wirojanagud, W., McEvoy, J., Limpiyakorn, T., & Khan, E. (2009). Atrazine degradation by stable mixed cultures enriched from agricultural soil and their characterization. Journal of Applied Microbiology, 106, 986–992.CrossRefGoogle Scholar
  44. Smith, D., Alvey, S., & Crowley, D. E. (2005). Cooperative catabolic pathways within an atrazine-degrading enrichment culture isolated from soil. FEMS Microbiology Ecology, 53, 265–273.CrossRefGoogle Scholar
  45. Vega, F. A., Covelo, E. F., & Andrade, M. L. (2007). Accidental organochlorine pesticide contamination of soil in Porriño, Spain. Journal of Environmental Quality, 36, 272–279.CrossRefGoogle Scholar
  46. Whiteley, A. S., & Bailey, M. J. (2000). Bacterial community structure and physiological state within an industrial phenol bioremediation system. Applied and Environmental Microbiology, 66, 2400–2407.CrossRefGoogle Scholar
  47. WHO. (1990). Public Health Impact of Pesticides Used in Agriculture. Geneva: WHO and UNEP.Google Scholar
  48. WHO. (2003). Health risks of persistent organic pollutants from long-range trans-boundary air pollution, Chapter 3. Hexachlorocyclohexanes (pp. 61–85). Geneva: Joint WHO/Convention Task Force on the Health Aspects of Air Pollution.Google Scholar
  49. Yang, C., Li, Y., Zhang, K., Wang, X., Ma, C., Tang, H., et al. (2010). Atrazine degradation by a simple consortium of Klebsiella sp. A1 and Comamonas sp. A2 in nitrogen enriched medium. Biodegradation, 21, 97–105.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • María Soledad Fuentes
    • 1
  • Juliana María Sáez
    • 1
  • Claudia Susana Benimeli
    • 1
    • 2
  • María Julia Amoroso
    • 1
    • 2
    • 3
  1. 1.Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET)San Miguel de TucumánArgentina
  2. 2.Universidad del Norte Santo Tomás de Aquino (UNSTA)San Miguel de TucumánArgentina
  3. 3.Facultad de Bioquímica, Química y FarmaciaUniversidad Nacional de Tucumán (UNT)San Miguel de TucumánArgentina

Personalised recommendations