Advertisement

Water, Air, & Soil Pollution

, Volume 220, Issue 1–4, pp 161–171 | Cite as

Efficiency of Mesocosm-Scale Constructed Wetland Systems for Treatment of Sanitary Wastewater Under Tropical Conditions

  • Aracelly Caselles-OsorioEmail author
  • Patricia Villafañe
  • Vanessa Caballero
  • Yelena Manzano
Article

Abstract

Subsurface-flow constructed wetlands technology (SSFW) has been used successfully for treating sanitary wastewater throughout North America and Europe. However, treatment wetland technologies have not been used extensively in the tropics. To advance tropical studies, a pilot-scale SSFW was constructed on the campus of the University of the Atlantic in Barranquilla, Colombia. The systems performance was monitored from January to July of 2009. The treatment system consisted of a 760-L septic tank followed by three mesocsom-scale subsurface-flow constructed wetlands in parallel arrangement. Clarified wastewater was batch loaded to each unit at a rate of 53 L/m2/day to affect a hydraulic retention time of approximately 3 days. One of the treatment units served as a non-planted control (gravel only), while the other two treatment units were planted with either Eriochloa aristata or Eleocharis mutata. The objective of this study was to evaluate the comparative efficacy of the treatment units (planted vs. unplanted), with respect to their abilities to augment treatment of septic tank effluent (sanitary wastewater). Monitored parameters included plant biomass, oxidation–reduction potential, chemical oxygen demand (COD), temperature, dissolved oxygen, pH, ammonia–nitrogen (NH 4 + –N) nitrate– and nitrite–nitrogen (NO3–N, NO2–N), phosphates (PO 4 ), and coliform bacteria. Total biomass (dry matter) was 2.84 and 0.87 Kg/m2 for E. aristata and E. mutata, respectively. Redox potential in the plant rizospheres averaged −172 mV (±164.1) in E. aristata, 29 mV (±251.1) in E. mutata, and 32 mV (±210.5) in the unplanted control. COD removal was superior in planted vs. non-planted systems (>75% vs. 47%). Ammonia and total phosphorus removal averaged 69% and 85%, respectively, in planted systems versus 31% and 59% in the unplanted system. Removal of total and fecal coliforms averaged 96%. Results of this pilot study revealed that SSFW technology in the tropics can provide significant removal of organic matter, nutrients, and bacteria from clarified sanitary wastewater.

Keywords

Constructed Wetlands COD Nitrification Redox potential Tropical macrophytes 

Notes

Acknowledgements

The authors wish to express appreciation to the Vice-rectory of Investigations the University of the Atlantic for the economic support. We also want to thank Professor Genisberto Barreto of the University of the Atlantic for his technical support and advice. And finally, we want to express appreciation to the Tennessee Valley Authority, Muscle Shoals, Alabama, USA for their generous donation of basic supplies and laboratory equipment which were used extensively for analyses of water quality.

References

  1. Aguirre, P. (2004). Mecanismos de eliminación de la materia orgánica y de los nutrientes en humedales construidos de flujo subsuperficial. In J. García, J. Morato, & J. M. Bayona (Eds.), Nuevos Criterios para el Diseño o y Operación de Humedales Construidos (pp. 7–16). Barcelona: Ediciones CPET, Universidad Politécnica de Cataluña.Google Scholar
  2. Alvarez, J., Torres, L., Reinoso, R., & Bécares, Y. E. (2005). Efecto de la degradación de las plantas en la eliminación de la materia orgánica en un humedal construido de flujo superficial. In Encuentro internacional en fitodepuración (pp. 38–44). León: Universidad de León.Google Scholar
  3. APHA-AWWA-WPCF. (1998). Standard Methods for the Examination of Water and Wastewater (19th ed.). Washington, DC: American Public Health Association.Google Scholar
  4. Arias, M. E., & Brown, T. P. (2009). Feasibility of using constructed treatment wetlands for municipal wastewater treatment in the Bogotá Savannah, Colombia. Ecological Engineering, 35, 1070–1078.CrossRefGoogle Scholar
  5. Ascuntar, R., Toro, V., Peña, V., & Madera, P. (2009). Changes of Flow Patterns in a Horizontal Subsurface Flow Constructed Wetland Treating Domestic Wastewater In Tropical Regions. Ecological Engineering, 35, 274–80.CrossRefGoogle Scholar
  6. Bernal, F., Mosquera, D., Maury, H. A., Gonzalez, D., Guerra, R., Pomare y, A., et al. (2003). Humedales artificiales para el tratamiento de las aguas residuales en la Corporación Universitaria de la Costa. In Seminario Internacional sobre métodos naturales para el tratamiento de aguas residuales Universidad del Valle (pp. 149–155). Cali: Instituto CINARA.Google Scholar
  7. Brisson, J., & Chazarenc, F. (2009). Maximizing pollutant removal in constructed wetlands: should we pay more attention to macrophyte species selection? The Science of the Total Environment, 407, 3923–3930.CrossRefGoogle Scholar
  8. Brix, H. (1994). Use of constructed wetlands in water pollution control: historical development, presents status and future perspectives. Water Science and Technology, 30(8), 209–223.Google Scholar
  9. Brix, H. (1997). Do macrophytes play a role in constructed treatment wetlands? Water Science andTechnology, 35(5), 11–17.CrossRefGoogle Scholar
  10. Caselles-Osorio, A., Eslava P., and Palmiery, F. (2008). Assessment of a pilot-scale constructed wetland system for treatment of sanitary wastewater in Colombia, South America. 81 st Annual Water Environment Federation, Technical Exhibition and Conference. Chicago, Ill. Octuber 18-22 2008. Available in CD.Google Scholar
  11. Coleman, J., Hench, K., Garbutt, K., Sexstone, A., Bissonnette, G. and Skousen, J. (2000). Treatment of domestic wastewater by three plant species in constructed wetland. Deparment of Biology, West Virginia University, Morgantown. 128: 283-295.Google Scholar
  12. Contraloría General de la República. (2008). Estado de los recursos naturales y del ambiente. Capitulo IV La calidad de agua para consumo humano en Colombia. 175 p. Available in CD.Google Scholar
  13. Crites, R., & Tchobanoglous, G. (1998). Small and decentralized wastewater management systems (p. 1084). New York: McGraw-Hill Book Company.Google Scholar
  14. Decamp, O., & Warren, A. (2001). Abundance, biomass and viability of bacteria in wastewaters: impact of treatment in horizontal subsurface flow constructed wetlands. Water Research, 35(14), 3496–3501.CrossRefGoogle Scholar
  15. Drizo, A., Frost, C., Smith, K., & y Grace, J. (1997). Phosphorus removal by horizontal reed beds using shale as a substrate. Water Enviroment Research, 68, 951–954.Google Scholar
  16. Gagnon, V., Chazarenc, F., Comeau, Y., & Brisson, J. (2007). Influence of macrophyte species on microbial density and activity in constructed wetlands. Water Science and Technology, 56(3), 249–254.CrossRefGoogle Scholar
  17. Garcia, J., Aguirre, P., Alvarez, E., Barragan, J., Mujeriego, R., Matamoros, V., et al. (2005). Effect of key design parameters on the efficiency of horizontal subsurface flow constructed wetlands. Ecological Engineering, 25, 405–418.CrossRefGoogle Scholar
  18. Garcia, J. A., Paredes, D., and Arias, C. A. (2009). Effect of plants and the combination of wetland treatment type systems on pathogen removal in tropical climate conditions. Universidad Tecnológica de Pereira, Pereira, Colombia. 3er Wetland Pollutant Dynamic and Control. WETPOL. Books of abstracts. 20-24 October/09. Barcelona (Spain)Google Scholar
  19. Gersberg, R. M., Lyon, S. R., Brenner, R., & Elkins, B. V. (1989). Integrated wastewater treatment by artificial wetlands: A gravel marsh case study. In In Constructed Wetlands for Wastewater Treatment (pp. 145–152). Chelsea: Lewis.Google Scholar
  20. Kadlec, R. H., & Knight, R. L. (1996). Treatment wetlands (p. 893). Boca Raton: CRC.Google Scholar
  21. Kadlec, R. H., Knight, L. R., Vymazal, J., Brix, H., Cooper, P., & Haberl, R. (2000). Constructed Wetlands for Pollution Control: Processes, Performance (p. 155). New York: IWA Specialist Group on Use of Macrophytes in Water Pollution Control, IWA.Google Scholar
  22. Kadlec, R. H., & Wallace, S. D. (2009). Treatment wetlands (Secondth ed., p. 1016). Boca Raton: Taylor and Francis.Google Scholar
  23. Katsenovich, Y. P., Hummel-Batista, A., Ravinet, A. J., & Miller, J. F. (2009). Performance evaluation of constructed wetlands in a tropical region. Ecological Engineering, 35, 1529–1537.CrossRefGoogle Scholar
  24. Konnerup, D., Koottatep, T., & Brix, H. (2009). Treatment of domestic wastewater in tropical, subsurface flow constructed wetlands planted with Canna and Heliconia. Ecological Engineering, 35, 248–257.CrossRefGoogle Scholar
  25. Nagles, N., Morato, J. and Peñuela, G. (2009). Evaluation of a pilot-scale subsurface constructed wetland system for leachate treatment from the Morro de Moravia in Medellin, Colombia. 3er Wetlands Pollutant Dynamic and Control. WETPOL. Books of abstracts. 20-24 October/09. Barcelona (Spain)Google Scholar
  26. Neori, A., Shpigel, M., & Ben-Ezra, y D. (2000). A sustainable integrated system for culture of fish, seaweed and abalone. Aquaculture, 186, 279–291.CrossRefGoogle Scholar
  27. Platzer, C. (1996). Enhanced nitrogen elimination in subsurface flow artificial wetlands—a multi stage concept. In Proceedings of the 5th IAWQ Conference on Wetland Systems in Water Polution Control. Wien.Google Scholar
  28. Ramos, Y., and Uribe, I. (2009). Planta piloto para tratamiento de aguas residuales industriales de ACESCO por medio de humedales construidos – láminas filtrantes®. II Simposio Iberoamericano de Ingeniería de Residuos. Universidad del Norte, 24 y 25 de septiembre. Barranquilla, Colombia. 1-15Google Scholar
  29. Singh, D., & Kumar, S. (2008). Nitrate reductase, arginine deaminase, urease and dehydrogenase activities in natural soil (ridges with forest) and in cotton soil after acetamiprid treatments. Chemosphere, 71, 412–418.CrossRefGoogle Scholar
  30. Steinberg, S. L., & Coonrod, H. S. (1994). Oxidation of the root zone by aquatic plants growing in gravel-nutrient solution culture. Journal of Environmental Quality, 23(5), 907–913.CrossRefGoogle Scholar
  31. Stottmeister, U., Wiessner, A., Kuschk, P., Kappelmeyer, U., Kastner, M., Bederski, O., et al. (2003). Effects of plants and microorganisms in constructed wetlands for wastewater treatment. Biotechnology Advances, 22(1–2), 93–117.CrossRefGoogle Scholar
  32. Tanner, C. C. (1996). Plants for constructed wetland treatment systems—a comparison of the growth and nutrient uptake of eight emergent species. Ecological Engineering, 7, 59–83.CrossRefGoogle Scholar
  33. Tanner, C. C. (2001). Plants as ecosystem engineers in subsurface-flow treatment wetlands. Water Science and Technology, 44(11–12), 9–17.Google Scholar
  34. USEPA (United State Environmental Pollution Agency). (2000). Constructed Wetland Treatment for Municipal Wastewater. EPA/625/R-99/010 (p. 166). Cincinnati: Office of Research and Development.Google Scholar
  35. Velasquez, J. (1994). Plantas acuaticas vasculares de Venezuela (p. 992). Caracas: Universidad Central de Venezuela, Consejo de Desarrollo Cientifico y Humanistico.Google Scholar
  36. Vymazal, J. (2007). Removal of nutrients in various types of constructed wetlands. The Science of the Total Environment, 380, 48–65.CrossRefGoogle Scholar
  37. Vymazal, J., and Kropfelova, L. (2008). Wastewater Treatment in Constructed Wetlands with Horizontal Sub-Surface Flow. Environmental Pollution 14. Springer ScienceGoogle Scholar
  38. Wand, H., Vacca, G., Kuschk, M., Krüger, M., & Kästner, M. (2007). Removal of bacteria by filtration in planted and non-planted sand columns. Water Research, 41, 159–167.CrossRefGoogle Scholar
  39. Wiessner, A., Kappelmeyer, U., Kunschk, P., & Kästner, M. (2005). Sulfate reduction and the removal of carbon and ammonia in a laboratory-scale constructed wetland. Water Research, 39(19), 4643–50.CrossRefGoogle Scholar
  40. Wiessner, A. E. Gonzalias, Kästner, M., & Kuschk, P. (2008). Effects of sulphur cycle processes on ammonia removal in a laboratory-scale constructed wetland planted with Juncus effuses. Ecological Engineering, 34, 162–167.CrossRefGoogle Scholar
  41. Zhu, T., & Sikora, F. J. (1995). Ammonium and nitrate removal in vegetated and unvegetated gravel bed microcosm wetlands. Water Science amd Technology., 32, 219–228.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Aracelly Caselles-Osorio
    • 1
    • 2
    Email author
  • Patricia Villafañe
    • 1
  • Vanessa Caballero
    • 1
  • Yelena Manzano
    • 1
  1. 1.Faculty of Basic SciencesUniversidad del AtlánticoBarranquillaColombia
  2. 2.Research group: Wetlands of the Colombian CaribbeanUniversidad del AtlánticoBarranquillaColombia

Personalised recommendations