Water, Air, & Soil Pollution

, Volume 220, Issue 1–4, pp 69–79 | Cite as

Effects of Vegetation in Mitigating the Toxicity of Pesticide Mixtures in Sediments of a Wetland Mesocosm

  • Richard E. LizotteJr.
  • Matthew T. Moore
  • Martin A. Locke
  • Robert Kröger


This study assessed effects of a mixture of two pesticides, diazinon and permethrin, on 48-h sediment toxicity to Hyalella azteca in a constructed wetland mesocosm containing non-vegetated and vegetated sections. Sediment samples were collected at inflow, middle, and back points within each section 5, 24, 72 h, 7, 14, and 21 days post-amendment. Pesticides were detected in sediments throughout non-vegetated and vegetated wetland sections. H. azteca 48-h survival varied across sampling period, wetland location, and vegetation type with lowest survival occurring within the first 72 h of the inflow and middle locations of the non-vegetated section. Sediment toxicity was ameliorated by 14 and 7 days within the non-vegetated and vegetated sections, respectively. Relationships between pesticide concentrations and animal survival indicated toxicity was from both diazinon and cis-permethrin in the non-vegetated section and primarily cis-permethrin in the vegetated section. Results show that vegetation ameliorated pesticide mixture 48-h sediment toxicity to H. azteca earlier and to a greater extent than non-vegetated constructed wetlands. A 21-day retention time is necessary to improve 48-h H. azteca sediment survival to ≥90% in wetlands of this size.


Diazinon Permethrin Constructed wetland Hyalella azteca 



Authors thank Lisa Brooks, Sam Testa III, John Massey, James Hill, and Dan McChesney for analytical assistance. Mention of equipment, computer programs or a pesticide does not constitute an endorsement for use by the US Department of Agriculture nor does it imply pesticide registration under FIFRA as amended. All programs and services of the USDA are offered on a non-discriminatory basis without regard to race, color, national origin, sex, marital status, or handicap.


  1. Allan, I. J., House, W. A., Parker, A., & Carter, J. E. (2005). Diffusion of the synthetic pyrethroid permethrin into bed sediments. Environmental Science & Technology, 39, 523–530.CrossRefGoogle Scholar
  2. Amweg, E. L., Weston, D. P., & Ureda, N. M. (2005). Use and toxicity of pyrethroid pesticides in the Central Valley, California, USA. Environmental Toxicology and Chemistry, 24, 966–972.CrossRefGoogle Scholar
  3. Anderson, B. S., Hunt, J. W., Phillips, B. M., Nicely, P. A., de Vlaming, V., Connor, V., et al. (2003). Integrated assessment of the impacts of agricultural drainwater in the Salinas River (California, USA). Environmental Pollution, 124, 523–532.CrossRefGoogle Scholar
  4. Anderson, B. S., Phillips, B. M., Hunt, J. W., Connor, V., Richard, N., & Tjeerdema, R. S. (2006). Identifying primary stressors impacting macroinvertebrates in the Salinas River (California, USA): relative effects of pesticides and suspended particles. Environmental Pollution, 141, 402–408.CrossRefGoogle Scholar
  5. Belden, J. B., & Lydy, M. J. (2006). Joint toxicity of chlorpyrifos and esfenvalerate to fathead minnows and midge larvae. Environmental Toxicology and Chemistry, 25, 623–629.CrossRefGoogle Scholar
  6. Belden, J. B., Gillom, R. J., Martin, J. D., & Lydy, M. J. (2006). Relative toxicity and occurrence patterns of pesticide mixtures in streams draining agricultural watersheds dominated by corn and soybean production. Integrated Environmental Assessment and Management, 3, 90–100.CrossRefGoogle Scholar
  7. Bennett, E. R., Moore, M. T., Cooper, C. M., & Smith, S. (2000). Method for the simultaneous extraction and analysis of two current use pesticides, atrazine and lamda-cyhalothrin, in sediment and aquatic plants. Bulletin of Environmental Contamination and Toxicology, 64, 825–833.CrossRefGoogle Scholar
  8. Bondarenko, S., & Gan, J. (2006). Degradation and sorption of selected organophosphate and carbamate insecticides in urban stream sediments. Environmental Toxicology and Chemistry, 23, 1809–1814.CrossRefGoogle Scholar
  9. Bouldin, J. L., Farris, J. L., Moore, M. T., Smith, S., Stephens, W. W., & Cooper, C. M. (2005). Evaluated fate and effects of atrazine and lambda-cyhalothrin in vegetated and unvegetated microcosms. Environmental Toxicology, 20, 487–498.CrossRefGoogle Scholar
  10. Bouldin, J. L., Farris, J. L., Moore, M. T., Smith, S., & Cooper, C. M. (2007). Assessment of diazinon toxicity in sediment and water of constructed wetlands using deployed Corbicula fluminea and laboratory testing. Archives of Environmental Contamination and Toxicology, 53, 174–182.CrossRefGoogle Scholar
  11. Cooper, J., & Dobson, H. (2007). The benefits of pesticides to mankind and the environment. Crop Protection, 26, 1337–1348.CrossRefGoogle Scholar
  12. de March, B. G. E. (1981). Hyalella azteca (Saussure). In: Lawrence SG (ed) Manual for the culture of selected freshwater invertebrates. Canadian Special Publications: Fisheries and Aquatic Sciences, 54:61–77.Google Scholar
  13. Denton, D. L., Wheelock, G. E., Murray, S. A., Deanovic, L. A., Hammock, B. D., & Hinton, D. E. (2003). Joint acute toxicity of esfenvalerate and diazinon to larval fathead minnows (Pimephales promelas). Environmental Toxicology and Chemistry, 22, 336–341.Google Scholar
  14. Eaton, A. D., Clesceri, L. S., Rice, E. W., & Greenberg, A. E. (2005). Standard methods for the examination of water and wastewater (21st ed.). Washington: American Public Health Association, American Water Works Association, Water Environment Federation.Google Scholar
  15. Gan, J., Lee, S. J., Liu, W. P., Haver, D. L., & Kabashima, J. N. (2005). Distribution and persistence of pyrethroids in runoff sediments. Journal of Environmental Quality, 34, 836–841.CrossRefGoogle Scholar
  16. Hunt, J. W., Anderson, B. S., Phillips, B. M., Tjeerdema, R. S., Richard, N., Connor, V., et al. (2006). Spatial relationships between water quality and pesticide application rates in agricultural watersheds. Environmental Monitoring and Assessment, 121, 245–262.CrossRefGoogle Scholar
  17. Hunt, J., Anderson, B., Phillips, B., Tjeerdema, R., Largay, B., Beretti, M., et al. (2008). Use of toxicity identification evaluations to determine the pesticide mitigation effectiveness of on-farm vegetated treatment systems. Environmental Pollution, 156, 348–358.CrossRefGoogle Scholar
  18. Kröger, R., Lizotte, R. E., & Moore, M. T. (2009). Survival, growth, and body residues of Hyalella azteca (Saussure) exposed to fipronil contaminated sediments from non-vegetated and vegetated microcosms. Bulletin of Environmental Contamination and Toxicology, 83, 369–373.CrossRefGoogle Scholar
  19. Locke, M. A., Knight, S. S., Smith, S., Cullum, R. F., Zablotowicz, R. M., Yuan, Y., et al. (2008). Environmental quality research in the Beasley Lake watershed, 1995-2007: succession from conventional to conservation practices. Journal of Soil and Water Conservation, 63, 430–442.CrossRefGoogle Scholar
  20. Maund, S. J., Hamer, M. J., Lane, M. C. G., Farrelly, E., Rapley, J. H., Goggin, U. M., et al. (2002). Partitioning, bioavailability and toxicity of the pyrethroid insecticide cypermethrin in sediments. Environmental Toxicology and Chemistry, 21, 9–15.CrossRefGoogle Scholar
  21. Milam, C. D., Bouldin, J. L., Farris, J. L., Schulz, R., Moore, M. T., Bennett, E. R., et al. (2005). Evaluating acute toxicity of methyl parathion application in constructed wetland mesocosms. Environmental Toxicology, 19, 471–479.CrossRefGoogle Scholar
  22. Moore, M. T., Lizotte, R. E., & Smith, S. (2007). Responses of Hyalella azteca to a pyrethroid mixture in a constructed wetland. Bulletin of Environmental Contamination and Toxicology, 78, 245–248.CrossRefGoogle Scholar
  23. Moore, M. T., Cooper, C. M., Smith, S., Cullum, R. F., Knight, S. S., Locke, M. A., et al. (2009). Mitigation of two pyrethroid insecticides in a Mississippi Delta constructed wetland. Environmental Pollution, 157, 250–256.CrossRefGoogle Scholar
  24. Nebeker, A. V., Schuytema, G. S., Griffis, W. L., Barbitta, J. A., & Carey, L. A. (1989). Effect of sediment organic carbon on survival of Hyalella azteca exposed to DDT and endrin. Environmental Toxicology and Chemistry, 8, 705–718.Google Scholar
  25. Ng, C. M., Weston, D. P., You, J., & Lydy, M. J. (2008). Patterns of pyrethroid contamination and toxicity in agricultural and urban stream segments. In J. Gan, F. Spurlock, P. Hendley, & D. P. Weston (Eds.), Synthetic pyrethroids: Occurrence and behavior in aquatic environments (pp. 355–369). Washington: American Chemical Society.CrossRefGoogle Scholar
  26. Reddy, K. R., & DeLaune, R. D. (2008). Biogeochemistry of wetlands: Science and applications. New York: CRC.CrossRefGoogle Scholar
  27. Schaff, S. D., Pezeshki, S. R., & Shields, F. D. (2003). Effects of soil conditions on survival and growth of black willow cuttings. Environmental Management, 31, 748–763.CrossRefGoogle Scholar
  28. Schulz, R., Moore, M. T., Bennett, E. R., Milam, C. D., Bouldin, J. L., Farris, J. L., et al. (2003a). Acute toxicity of methyl-parathion in wetland mesocosms: assessing the influence of aquatic plants using laboratory testing with Hyalella azteca. Archives of Environmental Contamination and Toxicology, 45, 331–336.CrossRefGoogle Scholar
  29. Schulz, R., Moore, M. T., Bennett, E. R., Farris, J. L., Smith, S., & Cooper, C. M. (2003b). Methyl parathion toxicity in vegetated and non-vegetated wetland mesocosms. Environmental Toxicology and Chemistry, 22, 1262–1268.CrossRefGoogle Scholar
  30. Sharom, M. S., Miles, J. R. W., Harris, C. R., & McEwen, F. L. (1980). Behavior of 12 insecticides in soil and aqueous suspensions of soil and sediment. Water Research, 14, 1095–1100.CrossRefGoogle Scholar
  31. Sherrard, R. M., Bearr, J. S., Murray-Gulde, C. L., Rodgers, J. H., & Shah, Y. T. (2004). Feasibility of constructed wetlands for removing chlorothalonil and chlorpyrifos from aqueous mixtures. Environmental Pollution, 127, 385–394.CrossRefGoogle Scholar
  32. Smith, S., Lizotte, R. E., & Moore, M. T. (2007). Toxicity assessment of diazinon in a constructed wetland using Hyalella azteca. Bulletin of Environmental Contamination and Toxicology, 79, 58–61.CrossRefGoogle Scholar
  33. US Department of Agriculture (USDA) National Agricultural Statistical Service (NASS). (2010). Agricultural chemical use database. http://www.pestmanagment.info/nass/. Accessed 30 March 2010.
  34. US Environmental Protection Agency (USEPA). (2000). Methods for measuring the toxicity and bioaccumulation of sediment-associated contaminants with freshwater invertebrates. EPA 600/R-99/064 Washington, DC.Google Scholar
  35. US Environmental Protection Agency (USEPA). (2004). Interim reregistration eligibility decision for diazinon. EPA 738-R-04-006 Washington, DC.Google Scholar
  36. US Environmental Protection Agency (USEPA). (2005). Aquatic life ambient water quality criteria: Diazinon. EPA 822-R-05-006 Washington, DC.Google Scholar
  37. US Environmental Protection Agency (USEPA). (2009). Reregistration eligibility decision for permethrin. EPA 738-R-09-306 Washington, DC.Google Scholar
  38. Weston, D. P., You, J., & Lydy, M. J. (2004). Distribution and toxicity of sediment associated pesticides in agriculture-dominated water bodies of California’s Central Valley. Environmental Science & Technology, 38, 2752–2759.CrossRefGoogle Scholar
  39. Weston, D. P., You, J., Amweg, E. L., & Lydy, M. J. (2008). Sediment toxicity in agricultural areas of California and the role of hydrophobic pesticides. In J. Gan, F. Spurlock, P. Hendley, & D. P. Weston (Eds.), Synthetic pyrethroids: Occurrence and behavior in aquatic environments (pp. 26–54). Washington: American Chemical Society.CrossRefGoogle Scholar
  40. Xu, Y., Gan, J., Wang, Z., & Spurlock, F. (2008). Effect of ageing on desorption kinetics of sediment-associated pyrethroids. Environmental Toxicology and Chemistry, 27, 1293–1301.CrossRefGoogle Scholar
  41. Zambonin, C. G., Losito, I., Cilenti, A., & Palmisano, F. (2002). Solid-phase microextraction coupled to gas chromatography-mass spectrometry for the study of soil adsorption coefficients of organophosphorus pesticides. Journal of Environmental Monitoring, 2002, 477–481.CrossRefGoogle Scholar
  42. Zhang, X., Liu, X., Luo, Y., & Zhang, M. (2008). Evaluation of water quality in an agricultural watershed as affected by almond pest management practices. Water Research, 42, 3685–3696.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. (outside the USA) 2010

Authors and Affiliations

  • Richard E. LizotteJr.
    • 1
  • Matthew T. Moore
    • 1
  • Martin A. Locke
    • 1
  • Robert Kröger
    • 2
  1. 1.USDA-ARS National Sedimentation LaboratoryOxfordUSA
  2. 2.Department of Wildlife, Fisheries and AquacultureMississippi State UniversityStarkvilleUSA

Personalised recommendations