Advertisement

Water, Air, & Soil Pollution

, Volume 219, Issue 1–4, pp 43–57 | Cite as

Foliar Nitrogen Uptake from Wet Deposition and the Relation with Leaf Wettability and Water Storage Capacity

  • Sandy Adriaenssens
  • Jeroen Staelens
  • Karen Wuyts
  • An de Schrijver
  • Shari Van Wittenberghe
  • Tatiana Wuytack
  • Fatemeh Kardel
  • Kris Verheyen
  • Roeland Samson
  • Pascal Boeckx
Article

Abstract

This study assessed the foliar uptake of 15N-labelled nitrogen (N) originating from wet deposition along with leaf surface conditions, measured by wettability and water storage capacity. Foliar 15N uptake was measured on saplings of silver birch, European beech, pedunculate oak and Scots pine and the effect of nitrogen form (NH 4 + or NO 3 ), NH 4 + to NO 3 ratio and leaf phenology on this N uptake was assessed. Next to this, leaf wettability and water storage capacity were determined for each tree species and phenological stage, and the relationship with 15NH 4 + and 15NO 3 uptake was examined. Uptake rates were on average five times higher (p < 0.05) for NH 4 + than for NO 3 and four times higher for deciduous species than for Scots pine. Developing leaves showed lower uptake than fully developed and senescent leaves, but this effect was tree species dependent. The applied NH 4 + to NO 3 ratio did only affect the amount of N uptake by senescent leaves. The negative correlation between measured leaf contact angles and foliar N uptake demonstrates that the observed effects of tree species and phenological stage are related to differences in leaf wettability and not to water storage capacity.

Keywords

Foliar uptake Nitrogen deposition Wettability Water storage capacity 15N labelling 

Notes

Acknowledgments

We gratefully acknowledge L. Willems, G. De bruyn, K. Van Nieuland, J. Vermeulen, K. Ceunen and A. De Mey for field and laboratory assistance. The first and sixth authors are granted a Ph.D. fellowship by the Research Foundation—Flanders (FWO) and the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen), respectively. The second and fourth authors are funded as postdoctoral fellows of FWO and the third author as postdoctoral fellow of the Special Research Fund of Ghent University (BOF). The seventh author is funded by the Flemish institute for support of Scientific-Technologic Research in Industry.

References

  1. Aber, J., McDowell, W., Nadelhoffer, K., Magill, A., Berntson, G., Kamakea, M., et al. (1998). Nitrogen saturation in temperate forest ecosystems—hypotheses revisited. Bioscience, 48, 921–934.CrossRefGoogle Scholar
  2. Ammann, M., Siegwolf, R., Pichlmayer, F., Suter, M., Saurer, M., & Brunold, C. (1999). Estimating the uptake of traffic-derived NO2 from N-15 abundance in Norway spruce needles. Oecologia, 118, 124–131.CrossRefGoogle Scholar
  3. Andre, F., Jonard, M., & Ponette, Q. (2008). Precipitation water storage capacity in a temperate mixed oak-beech canopy. Hydrological Processes, 22, 4130–4141.CrossRefGoogle Scholar
  4. Aston, A. R. (1979). Rainfall interception by 8 small trees. Journal of Hydrology, 42, 383–396.CrossRefGoogle Scholar
  5. Barthlott, W., & Neinhuis, C. (1997). Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta, 202, 1–8.CrossRefGoogle Scholar
  6. Bowden, R. D., Geballe, G. T., & Bowden, W. B. (1989). Foliar uptake of N-15 from simulated cloud water by red spruce (Picea-Rubens) seedlings. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere, 19, 382–386.CrossRefGoogle Scholar
  7. Bowman, W. D., Cleveland, C. C., Halada, L., Hresko, J., & Baron, J. S. (2008). Negative impact of nitrogen deposition on soil buffering capacity. Nature Geoscience, 1, 767–770.CrossRefGoogle Scholar
  8. Boyce, R. L., Mccune, D. C., & Berlyn, G. P. (1991). A comparison of foliar wettability of red spruce and balsam fir growing at high elevation. The New Phytologist, 117, 543–555.CrossRefGoogle Scholar
  9. Boyce, R. L., Friedland, A. J., Chamberlain, C. P., & Poulson, S. R. (1996). Direct canopy nitrogen uptake from N-15-labeled wet deposition by mature red spruce. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere, 26, 1539–1547.CrossRefGoogle Scholar
  10. Brewer, C. A., Smith, W. K., & Vogelmann, T. C. (1991). Functional interaction between leaf trichomes, leaf wettability and the optical properties of water droplets. Plant, Cell & Environment, 14, 955–962.CrossRefGoogle Scholar
  11. Bruckner, G., Gebauer, G., & Schulze, E. D. (1993). Uptake of (NH3)-N-15 by Picea abies in closed-chamber experiments. Isotopenpraxis, 29, 71–76.CrossRefGoogle Scholar
  12. Brumme, R., Leimcke, U., & Matzner, E. (1992). Interception and uptake of NH4+ and NO3 from wet deposition by aboveground parts of young beech (Fagus sylvatica L) trees. Plant and Soil, 142, 273–279.CrossRefGoogle Scholar
  13. Calanni, J., Berg, E., Wood, M., Mangis, D., Boyce, R., Weathers, W., et al. (1999). Atmospheric nitrogen deposition at a conifer forest: response of free amino acids in Engelmann spruce needles. Environmental Pollution, 105, 79–89.CrossRefGoogle Scholar
  14. Carslaw, D. C., Beevers, S. D., & Bell, M. C. (2007). Risks of exceeding the hourly EU limit value for nitrogen dioxide resulting from increased road transport emissions of primary nitrogen dioxide. Atmospheric Environment, 41, 2073–2082.CrossRefGoogle Scholar
  15. Chavez-Aguilar, G., Fenn, M. E., Gomez-Guerrero, A., Vargas-Hernandez, J., & Horwath, W. R. (2006). Foliar nitrogen uptake from simulated wet deposition in current-year foliage of Abies religiosa (H. B. K.) Schl. et Cham. Agrociencia, 40, 373–381.Google Scholar
  16. Dail, D. B., Hollinger, D. Y., Davidson, E. A., Fernandez, I., Sievering, H. C., Scott, N. A., et al. (2009). Distribution of nitrogen-15 tracers applied to the canopy of a mature spruce-hemlock stand, Howland, Maine, USA. Oecologia, 160, 589–599.CrossRefGoogle Scholar
  17. de Vries, W., Reinds, G.J., van der Salm, C., Draaijers, G., Bleeker, A. & Erisman, J.W. (2001). Intensive monitoring of forest ecosystems in Europe. Technical report 2001. Brussels, Geneva: EC-UN/ECE.Google Scholar
  18. de Vries, W., Solberg, S., Dobbertin, M., Sterba, H., Laubhann, D., van Oijen, et al. (2009). The impact of nitrogen deposition on carbon sequestration by European forests and heathlands. Forest Ecology and Management, 258, 1814–1823.CrossRefGoogle Scholar
  19. Eichert, T., & Goldbach, H. E. (2008). Equivalent pore radii of hydrophilic foliar uptake routes in stomatous and astomatous leaf surfaces—further evidence for a stomatal pathway. Physiologia Plantarum, 132, 491–502.CrossRefGoogle Scholar
  20. Eilers, G., Brumme, R., & Matzner, E. (1992). Aboveground N-uptake from wet deposition by Norway spruce (Picea-abies Karst). Forest Ecology and Management, 51, 239–249.CrossRefGoogle Scholar
  21. Erisman, J. W., & Draaijers, G. (2003). Deposition to forests in Europe: most important factors influencing dry deposition and models used for generalisation. Environmental Pollution, 124, 379–388.CrossRefGoogle Scholar
  22. Fitter, A. H., & Peat, H. J. (1994). The ecological flora database. Journal of Ecology, 82, 415–425.CrossRefGoogle Scholar
  23. Gaige, E., Dail, D. B., Hollinger, D. Y., Davidson, E. A., Fernandez, I. J., Sievering, H., et al. (2007). Changes in canopy processes following whole-forest canopy nitrogen fertilization of a mature spruce-hemlock forest. Ecosystems, 10, 1133–1147.CrossRefGoogle Scholar
  24. Garten, C. T., & Hanson, P. J. (1990). Foliar retention of N-15-nitrate and N-15-ammonium by red maple (Acer rubrum) and white oak (Quercus alba) leaves from simulated rain. Environmental and Experimental Botany, 30, 333–342.CrossRefGoogle Scholar
  25. Garten, C. T., Schwab, A. B., & Shirshac, T. L. (1998). Foliar retention of N-15 tracers: implications for net canopy exchange in low- and high-elevation forest ecosystems. Forest Ecology and Management, 103, 211–216.CrossRefGoogle Scholar
  26. Gilliam, F. S. (2006). Response of the herbaceous layer of forest ecosystems to excess nitrogen deposition. Journal of Ecology, 94, 1176–1191.CrossRefGoogle Scholar
  27. Gundersen, P., Schmidt, I. K., & Raulund-Rasmussen, K. (2006). Leaching of nitrate from temperate forests—effects of air pollution and forest management. Environmental Reviews, 14, 1–57.CrossRefGoogle Scholar
  28. Hagen-Thorn, A., Varnagiryte, I., Nihlgard, B., & Armolaitis, K. (2006). Autumn nutrient resorption and losses in four deciduous forest tree species. Forest Ecology and Management, 228, 33–39.CrossRefGoogle Scholar
  29. Haines, B. L., Jernstedt, J. A., & Neufeld, H. S. (1985). Direct foliar effects of simulated acid-rain.2. Leaf surface characteristics. The New Phytologist, 99, 407–416.CrossRefGoogle Scholar
  30. Hall, D. M., & Burke, W. (1974). Wettability of leaves of a selection of New Zealand plants. New Zealand Journal of Botany, 12, 283–298.Google Scholar
  31. Hall, D. M., Matus, A. I., Lamberto, J., & Barber, H. N. (1965). Infra-specific variation in wax on leaf surfaces. Australian Journal of Biological Science, 18, 323–332.Google Scholar
  32. Hansen, K., Draaijers, G. P. J., Ivens, W. P. M. F., Gundersen, P., & Vanleeuwen, N. F. M. (1994). Concentration variations in Rain and Canopy throughfall collected sequentially during individual rain events. Atmospheric Environment, 28, 3195–3205.CrossRefGoogle Scholar
  33. Harrison, A. F., Schulze, E.-D., Gebauer, G., & Bruckner, G. (2000). Canopy uptake and utilization of atmospheric pollutant nitrogen. In E.-D. Schulze (Ed.), Carbon and nitrogen cycling in European forest ecosystems (pp. 171–188). Berlin: Springer.Google Scholar
  34. Herwitz, S. R. (1985). Interception storage capacities of tropical rainforest canopy trees. Journal of Hydrology, 77, 237–252.CrossRefGoogle Scholar
  35. Hikosaka, K. (2005). Leaf canopy as a dynamic system: ecophysiology and optimality in leaf turnover. Annals of Botany, 95, 521–533.CrossRefGoogle Scholar
  36. Holloway, P. J. (1969). Effects of superficial wax on leaf wettability. The Annals of Applied Biology, 63, 145–153.CrossRefGoogle Scholar
  37. Houle, D., Ouimet, R., Paquin, R., & Laflamme, J. (1999). Interactions of atmospheric deposition with a mixed hardwood and a coniferous forest canopy at the Lake Clair Watershed (Duchesnay, Quebec). Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere, 29, 1944–1957.CrossRefGoogle Scholar
  38. Laubhann, D., Sterba, H., Reinds, G. J., & De Vries, W. (2009). The impact of atmospheric deposition and climate on forest growth in European monitoring plots: an individual tree growth model. Forest Ecology and Management, 258, 1751–1761.CrossRefGoogle Scholar
  39. Levy, Y., & Horesh, I. (1984). Importance of penetration through stomata in the correction of chlorosis with iron salts and low-surface-tension surfactants. Journal of Plant Nutrition, 7, 279–281.CrossRefGoogle Scholar
  40. Lumme, I. (1994). Nitrogen uptake of Norway spruce (Picea-abies Karst) seedlings from simulated wet deposition. Forest Ecology and Management, 63, 87–96.CrossRefGoogle Scholar
  41. Lumme, I., & Smolander, A. (1996). Effect of nitrogen deposition level on nitrogen uptake and bud burst in Norway spruce (Picea abies Karst.) seedlings and nitrogen uptake by soil microflora. Forest Ecology and Management, 89, 197–204.CrossRefGoogle Scholar
  42. Magnani, F., Mencuccini, M., Borghetti, M., Berbigier, P., Berninger, F., Delzon, S., et al. (2007). The human footprint in the carbon cycle of temperate and boreal forests. Nature, 447, 848–850.CrossRefGoogle Scholar
  43. Maier-Maercker, U. (1983). The role of peristomatal transpiration in the mechanism of stomatal movement. Plant, Cell & Environment, 6, 369–380.CrossRefGoogle Scholar
  44. Millard, P., & Proe, M. F. (1993). Nitrogen uptake, partitioning and internal cycling in Picea sitchensis (Bong.) Carr. as influenced by nitrogen supply. The New Phytologist, 125, 113–119.CrossRefGoogle Scholar
  45. Millard, P., & Thompson, C. M. (1989). The effect of the autumn senescence of leaves on the internal cycling of nitrogen for the spring growth of apple trees. Journal of Experimental Botany, 40, 1285–1289.CrossRefGoogle Scholar
  46. Monks, P. S., Granier, C., Fuzzi, S., Stohl, A., Williams, M. L., Akimoto, H., et al. (2009). Atmospheric composition change—global and regional air quality. Atmospheric Environment, 43, 5268–5350.CrossRefGoogle Scholar
  47. Mussche, S., Samson, R., Nachtergale, L., De Schrijver, A., Lemeur, R., & Lust, N. (2001). A comparison of optical and direct methods for monitoring the seasonal dynamics of leaf area index in deciduous forests. Silva Fennica, 35, 373–384.Google Scholar
  48. Nadelhoffer, K. J., Emmett, B. A., Gundersen, P., Kjonaas, O. J., Koopmans, C. J., Schleppi, P., et al. (1999). Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests. Nature, 398, 145–148.CrossRefGoogle Scholar
  49. Neary, A. J., & Gizyn, W. I. (1994). Throughfall and stemflow chemistry under deciduous and coniferous forest canopies in south-central Ontario. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere, 24, 1089–1100.CrossRefGoogle Scholar
  50. Niinemets, U., & Tamm, U. (2005). Species differences in timing of leaf fall and foliage chemistry modify nutrient resorption efficiency in deciduous temperate forest stands. Tree Physiology, 25, 1001–1014.Google Scholar
  51. Peuke, A. D., Jeschke, W. D., Dietz, K. J., Schreiber, L., & Hartung, W. (1998). Foliar application of nitrate or ammonium as sole nitrogen supply in Ricinus communis—I. Carbon and nitrogen uptake and inflows. The New Phytologist, 138, 675–687.CrossRefGoogle Scholar
  52. Rennenberg, H., & Gessler, A. (1999). Consequences of N deposition to forest ecosystems—recent results and future research needs. Water, Air, and Soil Pollution, 116, 47–64.CrossRefGoogle Scholar
  53. Rennenberg, H., Kreutzer, K., Papen, H., & Weber, P. (1998). Consequences of high loads of nitrogen for spruce (Picea abies) and beech (Fagus sylvatica) forests. The New Phytologist, 139, 71–86.CrossRefGoogle Scholar
  54. Sampson, D. A., Janssens, I. A., & Ceulemans, R. (2006). Under-story contributions to stand level GPP using the process model SECRETS. Agricultural and Forest Meteorology, 139, 94–104.CrossRefGoogle Scholar
  55. Sase, H., Takahashi, A., Sato, M., Kobayashi, H., Nakata, M., & Totsuka, T. (2008). Seasonal variation in the atmospheric deposition of inorganic constituents and canopy interactions in a Japanese cedar forest. Environmental Pollution, 152, 1–10.CrossRefGoogle Scholar
  56. Schreiber, L., Skrabs, M., Hartmann, K. D., Diamantopoulos, P., Simanova, E., & Santrucek, J. (2001). Effect of humidity on cuticular water permeability of isolated cuticular membranes and leaf disks. Planta, 214, 274–282.CrossRefGoogle Scholar
  57. Sievering, H., Tomaszewski, T., & Torizzo, J. (2007). Canopy uptake of atmospheric N deposition at a conifer forest: part I—canopy N budget, photosynthetic efficiency and net ecosystem exchange. Tellus Series B-Chemical and Physical Meteorology, 59, 483–492.CrossRefGoogle Scholar
  58. Solberg, S., Dobbertin, M., Reinds, G. J., Lange, H., Andreassen, K., et al. (2009). Analyses of the impact of changes in atmospheric deposition and climate on forest growth in European monitoring plots: a stand growth approach. Forest Ecology and Management, 258, 1735–1750.CrossRefGoogle Scholar
  59. Sparks, J. P. (2009). Ecological ramifications of the direct foliar uptake of nitrogen. Oecologia, 159, 1–13.CrossRefGoogle Scholar
  60. Staelens, J., Houle, D., De Schrijver, A., Neirynck, J., & Verheyen, K. (2008). Calculating dry deposition and canopy exchange with the canopy budget model: review of assumptions and application to two deciduous forests. Water, Air, and Soil Pollution, 191, 149–169.CrossRefGoogle Scholar
  61. Sutton, M. A., Burkhardt, J. K., Guerin, D., Nemitz, E., & Fowler, D. (1998). Development of resistance models to describe measurements of bi-directional ammonia surface-atmosphere exchange. Atmospheric Environment, 32, 473–480.CrossRefGoogle Scholar
  62. Thimonier, A., Schmitt, M., Waldner, P., & Rihm, B. (2005). Atmospheric deposition on Swiss long-term forest ecosystem research (LWF) plots. Environmental Monitoring and Assessment, 104, 81–118.CrossRefGoogle Scholar
  63. Thomas, R. Q., Canham, C. D., Weathers, K. C., & Goodale, C. L. (2010). Increased tree carbon storage in response to nitrogen deposition in the US. Nature Geoscience, 3, 13–17.CrossRefGoogle Scholar
  64. Tyree, M. T., Scherbatskoy, T. D., & Tabor, C. A. (1990). Leaf cuticles behave as asymmetric membranes—evidence from the measurement of diffusion potentials. Plant Physiology, 92, 103–109.CrossRefGoogle Scholar
  65. Vallano, D. M., & Sparks, J. P. (2008). Quantifying foliar uptake of gaseous nitrogen dioxide using enriched foliar delta N-15 values. The New Phytologist, 177, 946–955.CrossRefGoogle Scholar
  66. Verstraeten, A., Sioen, G., Neirynck, J., Genouw, G., Coenen, S., Van der Aa, B., et al. (2007). Bosvitaliteitsinventaris, meetnet intensieve monitoring bosecosystemen en meetstation luchtverontreiniging: resultaten 2006, Rapporten van het Instituut voor Natuur-en Bosonderzoek 2007. Geraardsbergen, UK: Instituut voor Natuur-en Bosonderzoek.Google Scholar
  67. Vitousek, P. M., Aber, J. D., Howarth, R. W., Likens, G. E., Matson, P. A., Schindler, D. W., et al. (1997). Human alteration of the global nitrogen cycle: sources and consequences. Ecological Applications, 7, 737–750.Google Scholar
  68. VMM (2007). ‘Zure regen’ in Vlaanderen, Depositiemeetnet verzuring 2005–2006.Google Scholar
  69. Wilson, E. J., & Tiley, C. (1998). Foliar uptake of wet-deposited nitrogen by Norway spruce: an experiment using N-15. Atmospheric Environment, 32, 513–518.CrossRefGoogle Scholar
  70. Wuyts, K., De Schrijver, A., Staelens, J., Gielis, M., Geudens, G., & Verheyen, K. (2008). Patterns of throughfall deposition along a transect in forest edges of silver birch and Corsican pine. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere, 38, 449–461.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Sandy Adriaenssens
    • 1
  • Jeroen Staelens
    • 1
    • 2
  • Karen Wuyts
    • 1
    • 3
  • An de Schrijver
    • 1
  • Shari Van Wittenberghe
    • 3
  • Tatiana Wuytack
    • 3
  • Fatemeh Kardel
    • 3
  • Kris Verheyen
    • 1
  • Roeland Samson
    • 3
  • Pascal Boeckx
    • 2
  1. 1.Laboratory of ForestryGhent UniversityGontrode (Melle)Belgium
  2. 2.Laboratory of Applied Physical Chemistry—ISOFYSGhent UniversityGhentBelgium
  3. 3.Department of Bioscience EngineeringUniversity of AntwerpAntwerpenBelgium

Personalised recommendations