Water, Air, & Soil Pollution

, Volume 218, Issue 1–4, pp 693–701 | Cite as

Bioremediation of Pulp and Paper Mill Effluent by Tannic Acid Degrading Enterobacter sp.

  • Yogendra Prakash Singh
  • Purnima Dhall
  • R. M. Mathur
  • R. K. Jain
  • Vasanta vadde Thakur
  • Virendra Kumar
  • Rita Kumar
  • Anil Kumar
Article

Abstract

Wastewaters from pulp and paper mills are highly toxic and around 250 xenobiotic compounds have been reported in the effluents. Tannic acid degrading bacterium, Enterobacter sp. was isolated from soil by tannic acid enrichment. This isolate was used for bioremediation of pulp and paper mill effluents. Parameters like temperature, agitation, inoculum size and treatment duration were optimized by using Qualiteck-4 software. Reduction in lignin 73% and colour up to 82% was also observed. Encouraging results were observed is reduction of COD, BOD with 16-h retention time in batch culture.

Keywords

Bioremediation COD BOD Lignin Colour 

Notes

Acknowledgements

The authors acknowledge the financial help provided by the Department of Biotechnology, Government of India. The authors also acknowledge Mr. Indrajeet Singh and Mr. Virendra Kumar Tyagi for extending their cooperation for providing wastewater samples, whenever required and the generous hospitality offered to us upon each visit. We are also thankful to CSIR for providing necessary infrastructure.

References

  1. Addison, R., Ikonomou, M., & Smith, T. (2005). PCDD/F and PCB in harbour seals (Phoca vitulina) from British Columbia: response to exposure to pulp mill effluents. Journal of Marine Environmental Research, 59, 165–176.CrossRefGoogle Scholar
  2. Ali, M., & Sreekrishnan, T. (2001). Aquatic toxicity from pulp and paper mill effluents: a review. Journal of Advances in Environmental Research, 5, 175–196.CrossRefGoogle Scholar
  3. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410.Google Scholar
  4. American Public Health Association (1998). American Water Works Association and Water Environment Federation, Standard Methods for the Examination of Water and Wastewater (20th ed.). Washington, DC: APHA.Google Scholar
  5. Ashtoukhy, E., Amin, E., & Abdelwahab, N. (2009). Treatment of paper mill effluents in a batch-stirred electrochemical tank reactor. Chemical Engineering Journal, 146, 205–210.CrossRefGoogle Scholar
  6. Baig, S., & Liechti, P. (2001). Ozone treatment for biorefractory COD removal. Journal of Water Science and Technology, 43(2), 197–204.Google Scholar
  7. Berryman, D., Houde, F., DeBlois, C., & O’Shea, M. (2004). Nonylphenolic compounds in drinking and surface waters downstream of treated textile and pulp and paper effluents: a survey and preliminary assessment of their potential effects on public health and aquatic life. Chemosphere, 56(3), 247–255.Google Scholar
  8. Bhat, T. K., Singh, B., & Sharma, O. P. (1998). Microbial degradation of tannins—a current perspective. Journal of Biodegradation, 9, 343–357.CrossRefGoogle Scholar
  9. Chandra, R. (2001). Microbial decolorisation of pulp mill effluent in presence of nitrogen and phosphorus by activated sludge process. Journal of Environmental Biology, 22(1), 23–7.Google Scholar
  10. Chandra, R., Raj, A., Purohit, H. J., & Kapley, A. (2007). Characterisation and optimisation of three potential aerobic bacterial strains for kraft lignin degradation from pulp paper waste. Chemosphere, 67, 839–846.CrossRefGoogle Scholar
  11. Chandra, R., Raj, A., Yadav, S., & Patel, D. K. (2009). Reduction of pollutants in pulp paper mill effluent treated by PCP-degrading bacterial strains. Environmental Monitoring and Assessment, 155, 1–4.Google Scholar
  12. Chuphal, Y., Kumar, V., & Thakur, I. S. (2005). Biodegradation and decolorization of pulp and paper mill effluent by anaerobic and aerobic microorganisms in a sequential bioreactor. World Journal of Microbiology and Biotechnology, 21, 1439–1445.CrossRefGoogle Scholar
  13. Couto, S., & Herrera, J. (2006). Industrial and biotechnological applications of laccases: A review. Journal of Biotechnology Advances, 24, 500–513.CrossRefGoogle Scholar
  14. Deschamps, A. M., Mahoudeau, G., & Lebeault, J. M. (1980). Fast Degradation of Kraft Lignin by Bacteria. European Journal of Applied Microbiology and Biotechnology, 9, 45–51.CrossRefGoogle Scholar
  15. Durán, N., Rosa, M., et al. (2002). Applications of laccases and tyrosinases (phenoloxidases) immobilized on different supports: a review. Journal of Enzyme and Microbial Technology, 31, 907–931.CrossRefGoogle Scholar
  16. Garg, S., & Modi, D. (1999). Decolorization of Pulp-paper Mill effluents by White-Rot fungi. Journal of Critical Reviews in Biotechnology, 19(2), 85–112.CrossRefGoogle Scholar
  17. Ghoreishi, S. M., & Haghighi, M. R. (2007). Chromophores removal in pulp and paper mill effluent via hydrogenation-biological batch reactors. Chemical Engineering Journal, 127, 59–70.CrossRefGoogle Scholar
  18. Gupta, V. K., Minocha, A. K., & Jain, N. (2001). Batch and continuous studies on treatment of pulp mill wastewater by. Journal of Chemical Technology and Biotechnology, 76, 547–552.CrossRefGoogle Scholar
  19. Hao, D. T., & Man, T. D. (2006). Study on treatment of alkaline black liquor using sulphate reducing bacteria. Advances in Natural Sciences, 7(1 and 2), 139–144.Google Scholar
  20. Hofrichter, M. (2002). Review: lignin conversion by manganese peroxidase (MnP). Journal of Enzyme and Microbial Technology, 30, 454–466.CrossRefGoogle Scholar
  21. Lin, S. Y., & Dence, C. W. (1992). Modified Pearl Benson method for estimation of lignin in water. In: Methods in Lignin Chemistry, 33. Berlin: Springer.Google Scholar
  22. Malaviya, P., & Rathore, V. S. (2007). Bioremediation of pulp and paper mill effluent by a novel fungal consortium isolated from polluted soil. Journal of Bioresource Technology, 98, 3647–3651.CrossRefGoogle Scholar
  23. Mänttäri, M., Kuosa, M., Kallas, J., et al. (2008). Membrane filtration and ozone treatment of biologically treated effluents from the pulp and paper industry. Journal of Membrane Science, 309, 112–119.CrossRefGoogle Scholar
  24. Mousavi, S. M., Yaghmaei, S., Jafari, A., et al. (2007). Optimization of ferrous biooxidation rate in a packed bed bioreactor using Taguchi approach. Journal of Chemical Engineering and Processing, 46, 935–940.Google Scholar
  25. NCASI (1999). A method for analysis of color of pulp and paper industrial waste water National Council for Air and Stream Improvement Inc. USA.Google Scholar
  26. Olabi, A. G., Casalino, G., Benyounis, K. Y., et al. (2006). An ANN and Taguchi algorithms integrated approach to the optimization of CO2 laser welding. Journal of Advances in Engineering Software, 37, 643–648.CrossRefGoogle Scholar
  27. Pedroza, A., Mosqueda, R., Alonso-Vante, N., & Refugio, R.-V. (2007). Sequential treatment via Trametes versicolor and UV/TiO2/RuxSey to reduce contaminants in waste water resulting from the bleaching process during paper production. Chemosphere, 67, 793–801.CrossRefGoogle Scholar
  28. Pihlajamäki, A., & Nyström, M. (2002). Comparison of nanofiltration and tight ultrafiltration membranes in the filtration of paper mill process water. Journal of Desalination, 149, 131–136.CrossRefGoogle Scholar
  29. Raj, A., Krishna Reddy, M. M., & Chandra, R. (2007). Decolourisation and treatment of pulp and paper mill effluent by lignin-degrading Bacillus sp. Journal of Chemical Technology and Biotechnology, 82, 399–406.CrossRefGoogle Scholar
  30. Ratkowsky, D. A., Olley, J., & Ross, T. (2005). Unifying temperature effects on the growth rate of bacteria and the stability of globular proteins. Journal of Theoretical Biology, 233, 351–362.CrossRefGoogle Scholar
  31. Ruggaber, T., Talley, J., et al. (2006). Enhancing bioremediation with enzymatic processes: a review. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 10(2), 73–85.CrossRefGoogle Scholar
  32. Savant, D., Abdul-Rahman, R., & Ranade, D. (2006). Anaerobic degradation of adsorbable organic halides (AOX) from pulp and paper industry wastewater. Journal of Bioresource Technology, 97, 1092–1104.CrossRefGoogle Scholar
  33. Shin, H., Kim, Y., Han, B., & Makarov, I. (2002). Application of electron beam to treatment of wastewater from paper mill. Radiation Physics and Chemistry, 65, 539–547.CrossRefGoogle Scholar
  34. Singh, S., Chandra, R., Patel, D. K., Reddy, M. M. K., & Rai, V. (2008). Investigation of the biotransformation of pentachlorophenol and pulp paper mill effluent decolorisation by the bacterial strains in a mixed culture. Bioresource Technology, 99, 5703–5709.CrossRefGoogle Scholar
  35. Stephenson, R., & Duff, S. (1996). Coagulation and precipitation of a mechanical pulping effluent—II. Toxicity removal and metal salt recovery. Journal of Water Resources, 30, 793.Google Scholar
  36. Stuthridge, T. R., & Macfarlane, P. N. (1994). Adsorbable organic halide removal mechanisms in a pulp and paper mill aerated lagoon treatment system. Water Science and Technology, 29(5–6), 195–208.Google Scholar
  37. Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Journal of. Molecular Biology and Evolution, 24, 1596–1599.CrossRefGoogle Scholar
  38. Tang, L., Zeng, G., Wang, H., Shen, G., & Huang, D. (2005). Amperometric detection of lignin-degrading peroxidase activities from Phanerochaete chrysosporium. Journal of Enzyme and Microbial Technology, 36, 960–966.CrossRefGoogle Scholar
  39. Versalovic, J., Koeuth, T., & Lupski, J. R. (1991). Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Journal of Nucleic Acids Res, 19, 6823–6831.CrossRefGoogle Scholar
  40. WHO (2007) Fact sheet No. 225. Dioxins and their effects on human health. Resource document. World health organization. Available at: http://www.who.int/mediacentre/factsheets/fs225/en/. Accessed 14 August 2009.
  41. Wilson, L. A., & Sharp, P. M. (2006). Enterobacterial repetitive intergenic consensus (ERIC) sequences in Escherichia coli: evolution and implications for ERIC-PCR. Molecular Biology and Evolution, 23(6), 1156–1168.CrossRefGoogle Scholar
  42. Zulkifli, Y., Alitheen, N. B., Son, R., Raha, A. R., et al. (2009). Random amplified polymorphic DNA-PCR and ERIC PCR analysis on Vibrio parahaemolyticus isolated from cockles in Padang, Indonesia. Journal of International Food Research Journal, 16, 141–150.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Yogendra Prakash Singh
    • 1
  • Purnima Dhall
    • 1
  • R. M. Mathur
    • 2
  • R. K. Jain
    • 2
  • Vasanta vadde Thakur
    • 2
  • Virendra Kumar
    • 1
  • Rita Kumar
    • 1
  • Anil Kumar
    • 1
  1. 1.Institute of Genomics and Integrative BiologyDelhiIndia
  2. 2.Biotechnology and Lignin By-productsCentral Pulp and Paper Research InstituteSaharanpurIndia

Personalised recommendations