Water, Air, & Soil Pollution

, Volume 218, Issue 1–4, pp 437–444 | Cite as

Assessment of the Toxic Potential of Sewage Sludge in the Midgut of the Diplopod Rhinocricus padbergi

  • Danielli Giuliano Perez
  • Carmem Silvia Fontanetti


The destination of sewage sludge is a problem faced by sewage treatment plants (STPs). Many alternatives have been sought, such as the application of sewage sludge in degraded soils and in agriculture as fertilizer. However, due to the risk of contamination with pathogens and/or metals, the use of sludge should be done cautiously. By the habits that diplopods present, they have been considered good environmental indicators for soil analysis. In this study, animals from the Rhinocricus padbergi species were exposed to two sewage sludge samples from two STPs in the São Paulo State, for different periods. The midgut of the animals were removed and histologically processed and subjected to histochemical tests. It was detected the following tissular responses: clusters of haemocytes through the cells of the fat body layer, increase in the quantity of intracellular granules in the cells of the fat body layer, increase in the release of secretion vesicles of the intestinal epithelium, and intense vacuolization of the cytoplasm of epithelial cells. The results suggest the presence of toxic substances to the studied species in both sludge samples used.


Histochemistry Histopathology Invertebrate Millipede Soil toxicity 


  1. Arab, A., Zacarin, G. G., Fontanetti, C. S., Camargo-Mathias, M. I., dos Santos, M. G., & Cabrera, A. C. (2003). Composition of the defensive secretion of the Neotropical millipede Rhinocricus padbergi Verhoeff, 1938 (Diplopoda: Spirobolida: Rhinocricidae). Entomotropica, 18(2), 79–82.Google Scholar
  2. Bernet, D., Schmidt, H., Meier, W., Burkhardtholm, P., & Wahli, T. (1999). Histopathology in fish: proposal for a protocol to assess aquatic pollution. Journal of Fish Diseases, 22, 25–34.CrossRefGoogle Scholar
  3. Bettiol, W., & Camargo, O. A. (2006). A disposição de lodo de esgoto em solo agrícola. In W. Bettiol & O. A. Camargo (Eds.), Lodo de esgoto: impactos ambientais na agricultura (pp. 25–35). Jaguariúna: Embrapa Meio Ambiente.Google Scholar
  4. Biagini, F.R., David, J.A.O., & Fontanetti, C.S. (2006). Analysis of mucous cells in gills of Oreochromis niloticus submitted to water contaminated by oil. XIII Congresso da Sociedade Brasileira de Biologia Celular (IV Internacional Symposium on Extracellular Matrix), Búzios-RJ, Anais SBBC/SIMEC 2006. p. 140.Google Scholar
  5. Boeira, R. C., Ligo, M. A. V., & Dynia, J. F. (2002). Mineralização de nitrogênio em solo tropical tratado com lodos de esgoto. Pesquisa Agropecuaria Brasileira, 37(11), 1639–1647.CrossRefGoogle Scholar
  6. Camargo, O. A., Pires, A. M. M., & Bettiol, W. (2008). Lodo na agricultura. Ciência Hoje, 42(248), 68–70.Google Scholar
  7. Camargo-Mathias, M. I., & Fontanetti, C. S. (2000). Ultrastructural features of the fat body and oenocytes of Rhinocricus padbergi Verhoeff (Diplopoda, Spirobolida). Biocell, 24(1), 1–12.Google Scholar
  8. Camargo-Mathias, M. I., Fontanetti, C. S., & Micó-Balaguer, E. (1998). Histochemical studies of Rhinocricus padbergi Verhoeff ovaries (Diplopoda, Spirobolida, Rhinocricidae). Cytobios, 94, 169–184.Google Scholar
  9. Camargo-Mathias, M. I., Fantazzini, E. R., & Fontanetti, C. S. (2004). Ultrastructural features of the midgut of Rhinocricus padbergi (Diplopoda: Spirobolida). Brazilian Journal of Morphology Science, 21(2), 65–71.Google Scholar
  10. Carvalho, H. E., & Recco-Pimentel, S. M. (2001). A célula 2001. Barueri: Editora Manole.Google Scholar
  11. Coraucci Filho, B., Campos, A. F., Pires, M. G., & Nascimento, P. M. (2003). FEC pesquisa uso de lodo de esgoto como fertilizante. Jornal da Unicamp, 237, 11.Google Scholar
  12. Crommentuijn, T., Doodeman, C. J. A. M., Doornekamp, A., van der Pol, J. J. C., Bedaux, J. J. M., & van Gestel, C. A. M. (1994). Lethal body concentrations and accumulation patterns determine time-dependent toxicity of cadmium in soil arthropods. Environmental Toxicology and Chemistry, 13(11), 1781–1789.CrossRefGoogle Scholar
  13. David, J. A. O., & Fontanetti, C. S. (2009). The role of mucus in Mytella falcata (Orbigny, 1842) gills from polluted environments. Water, Air, and Soil Pollution, 203, 261–266.CrossRefGoogle Scholar
  14. DAEE - Departamento de Águas e Energia Elétrica do Estado de São Paulo (2006). Plano Estadual de Recursos Hídricos 2004–2007. São Paulo: DAEEGoogle Scholar
  15. Edinger, A. L., & Thompson, C. B. (2004). Death by design: apoptosis, necrosis and autophagy. Current Opinion in Cell Biology, 16, 663–669.CrossRefGoogle Scholar
  16. Falleiros, A. M. F., Bombonato, M. T. S., & Gregório, E. A. (2003). Ultrastructural and quantitative studies of hemocytes in sugarcane borer, Diatraea saccharalis (Lepidoptera: Pyralidae). Brazilian Archives of Biology and Technology, 46(2), 287–294.CrossRefGoogle Scholar
  17. Fantazzini, E. R., Fontanetti, C. S., & Camargo-Mathias, M. I. (1998). Anatomy of the digestive tube, histology and histochemistry of the foregut and salivary glands of Rhinocricus padbergi (Diplopoda, Rhinocricidae). Arthropoda Selecta, 7, 256–264.Google Scholar
  18. Fantazzini, E. R., Fontanetti, C. S., & Camargo-Mathias, M. I. (2002). Midgut of the millipede Rhinocricus padbergi Verhoeff, 1938 (Diplopoda: Spirobolida): Histology and histochemistry. Arthropoda Selecta, 11(2), 135–142.Google Scholar
  19. Fontanetti, C. S., & Camargo-Mathias, M. I. (2004). External morphology of the antennae of Rhinocricus padbergi Verhoeff, 1938 (Diplopoda: Spirobolida). Brazilian Journal of Morphology Science, 21(2), 73–79.Google Scholar
  20. Fontanetti, C. S., Camargo-Mathias, M. I., & Caetano, F. H. (2001). Apocrine secretion in the midgut of Plusioporus setiger (Brolemann, 1901) (Diplopoda, Spirostreptidae). Naturalia, 26, 35–42.Google Scholar
  21. Fontanetti, C. S., Camargo-Mathias, M. I., & Tiritan, B. M. S. (2004). The fat body in Rhinocricus padbergi (Diplopoda, Spirobolida). Iheringia, 94(4), 351–355.CrossRefGoogle Scholar
  22. Fontanetti, C. S., Tiritan, B., & Camargo-Mathias, M. I. (2006). Mineralized bodies in the fat body of Rhinocricus padbergi (Diplopoda). Brazilian Journal of Morphology Science, 23, 487–493.Google Scholar
  23. Godoy, J. A. P., & Fontanetti, C. S. (2009). Diplopods as bioindicators of soils: analysis of midgut of individuals maintained in substract containing sewage sludge. Water, Air and Soil Pollution. doi:10.1007/s11270-009-0261-z.Google Scholar
  24. Grivicich, I., Regner, A., & Rocha, A. B. (2007). Morte celular por apoptose. Revista Brasileira de Cancerologia, 53(3), 335–343.Google Scholar
  25. Hopkin, S. P. (1990). Critical concentrations, pathways of detoxification and cellular ecotoxicology of metals in terrestrial arthropods. Functional Ecology, 4, 321–327.CrossRefGoogle Scholar
  26. Hopkin, S. P., Watson, K., Martin, M. H., & Mould, M. L. (1985). The assimilation of heavy metals by Lithobius variegatus and Glomeris marginata (Chilopoda; Diplopoda). Bijdr Dierk, 55(1), 88–94.Google Scholar
  27. Hubert, M. (1979). Localization and identification of mineral elements and nitrogenous waste in Diplopoda. In M. Camatini (Ed.), Myriapod biology (pp. 127–134). London: Academic.Google Scholar
  28. Jones, J. C. (1962). Current concepts concerning insect hemocytes. American Zoologist, 2, 209–246.Google Scholar
  29. Junqueira, L. C., & Junqueira, L. M. M. S. (1983). Técnicas Básicas de Citologia e Histologia. São Paulo: Livraria Editora Santos.Google Scholar
  30. Köhler, H. R., & Triebskorn, R. (1998). Assessment of the cytotoxic impact of heavy metals on soil invertebrates using a protocol integrating qualitative and quantitative components. Biomarkess, 3, 109–127.CrossRefGoogle Scholar
  31. Kölher, H. R., Körtje, K. H., & Alberti, G. (1995). Content, absorption quantities and intracellular storage sites of heavy metals in Diplopoda (Arthropoda). Biometals, 8, 37–46.Google Scholar
  32. Mielli, A. C., Matta, M. E. M., Nersesyan, A., Saldiva, P. H. N., & Umbuzeiro, G. A. (2009). Evaluation of the genotoxicity of treated urban sludge in the Tradescantia micronucleus assay. Mutation Research, 672, 51–54.Google Scholar
  33. Miyoshi, A. R., Gabriel, V. A., Fantazzini, E. R., & Fontanetti, C. S. (2005). Microspines in the pylorus of Pseudonannolene tricolor and Rhinocricus padbergi (Arthropoda, Diplopoda). Iheringia, 95(2), 183–187.Google Scholar
  34. Nogarol, L. R., & Fontanetti, C. S. (2010). Acute and subchronic exposure of diplopods of substrate containing sewage mud: tissular responses of the midgut. Micron, 41(3), 239–246.CrossRefGoogle Scholar
  35. Parolin, M. B., & Reason, I. J. M. (2001). Apoptose como mecanismo de lesão nas doenças hepatobiliares. Arquivos de Gastroenterologia, 38(2), 138–144.CrossRefGoogle Scholar
  36. Pearse, A. G. E. (1985). Histochemistry: Theoretical and applied. London: J&A.Google Scholar
  37. Ravindranath, M. H. (1973). The hemocytes of a millipede, Thyropygus poseidon. Journal of Morphology, 141, 257–268.CrossRefGoogle Scholar
  38. Triebskorn, R., Köhler, H. R., Zanh, T., Vogt, G., Ludwing, M., Rumpf, S., et al. (1991). Invertebrate cells as targets for hazardous substances ziet. Zeitzchrift für angewandte Zoologie, 78, 277–287.Google Scholar
  39. Triebskorn, R., Henderson, I. F., & Martin, A. P. (1999). Detection of iron in tissues from slugs (Deroceras reticulatum Müller) after ingestion of iron chelates by means of energy-filtering transmission electron microscopy (EFTEM). Pesticide Science, 55, 55–61.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Danielli Giuliano Perez
    • 1
  • Carmem Silvia Fontanetti
    • 1
  1. 1.Department of BiologyInstitute of Biosciences UNESPRio ClaroBrazil

Personalised recommendations