Water, Air, & Soil Pollution

, Volume 218, Issue 1–4, pp 213–226 | Cite as

Understanding Phosphorus Mobility and Bioavailability in the Hyporheic Zone of a Chalk Stream

  • Dan J. Lapworth
  • Daren C. Gooddy
  • Helen P. Jarvie


This paper investigates the changes in bioavailable phosphorus (P) within the hyporheic zone of a groundwater-dominated chalk stream. In this study, tangential flow fractionation is used to investigate P associations with different size fractions in the hyporheic zone, groundwater and surface water. P speciation is similar for the river and the chalk aquifer beneath the hyporheic zone, with ‘dissolved’ P (<10 kDa) accounting for ~90% of the P in the river and >90% in the deep groundwaters. Within the hyporheic zone, the proportion of ‘colloidal’ (<0.45 μm and >10 kDa) and ‘particulate’ (>0.45 μm) P is higher than in either the groundwater or the surface water, accounting for ~30% of total P. Our results suggest that zones of interaction within the sand and gravel deposits directly beneath and adjacent to river systems generate colloidal and particulate forms of fulvic-like organic material and regulate bioavailable forms of P, perhaps through co-precipitation with CaCO3. While chalk aquifers provide some degree of protection to surface water ecosystems through physiochemical processes of P removal, where flow is maintained by groundwater, ecologically significant P concentrations (20–30 μg/L) are still present in the groundwater and are an important source of bioavailable P during baseflow conditions. The nutrient storage capacity of the hyporheic zone and the water residence times of this dynamic system are largely unknown and warrant further investigation.


Nutrients Phosphorus Hyporheic Groundwater River Chalk Tangential flow fractionation (TFF) 


  1. Abesser, D., Shand, P., Gooddy, D. C., & Peach, D. (2008). The role of alluvial valley deposits in groundwater-surface water exchange in a chalk river. IAHS Publication, 321, 11–20.Google Scholar
  2. Ádám, K., Krogstad, T., Vråle, L., Søvik, A. K., & Jenssen, P. D. (2007). Phosphorus retention in the filter materials shellsand and filtralite P®—Batch and column experiment with synthetic P solution and secondary wastewater. Ecological Engineering, 29, 200–208.CrossRefGoogle Scholar
  3. Aldiss, D. T., & Royse, K. R. (2002). The geology of the Pang-Lambourn catchment, Berkshire. British Geological Survey Commissioned Report, CR/20/289N.Google Scholar
  4. Allen, D. J., Darling, W. G., Gooddy, D. G., Lapworth, D. J., Newell, A. J., Williams, A. T., et al. (2010). Interaction between groundwater, surface water and the hyporheic zone in a chalk stream. Hydrogeology Journal, 18(5), 1125–1141.CrossRefGoogle Scholar
  5. Backhus, D. A., Ryan, J. N., Groher, D. M., Macfarlane, J. K., & Gschwend, P. M. (1993). Sampling colloids and colloid-associated contaminants in ground-water. Ground Water, 31, 466–479.CrossRefGoogle Scholar
  6. Ballantine, D. J., Walling, D. E., Collins, A. L., & Leeks, G. (2006). Phosphorus storage in fine channel bed sediments. Water, Air, and Soil Pollution, 6, 371–380.CrossRefGoogle Scholar
  7. Boulton, A. J., Findlay, S., Marmonier, P., Stanley, E. H., & Valett, H. M. (1998). The functional significance of the hyporheic zone in streams and rivers. Annual Review of Ecology and Systematics, 29, 59–81.CrossRefGoogle Scholar
  8. Chen, R. F. (1999). In situ fluorescence measurements in coastal waters. Organic Geochemistry, 30, 397–409.CrossRefGoogle Scholar
  9. Centre for Ecology & Hydrology, British Geological Survey (2008). UK hydrometric register. A catalogue of river flow gauging stations and observation wells and boreholes in the United Kingdom together with summary hydrometric and spatial statistics. Wallingford, Centre for Ecology & Hydrology, 210pp. (Hydrological Data UK).Google Scholar
  10. Cook, P. G., Favreau, G., Dighton, J. C., & Tickell, S. (2003). Determining natural groundwater influx to a tropical river using radon, chlorofluorocarbons and ionic environmental tracers. Journal of Hydrology, 277, 74–88.CrossRefGoogle Scholar
  11. Curie, F., Ducharne, A., Sebilo, A., & Bendjoudi, M. (2009). Denitrification in a hyporheic riparian zone controlled by river regulation in the Seine river basin (France). Hydrological Procedure, 23, 655–664.CrossRefGoogle Scholar
  12. Dahm, C. N., Grimm, N. B., Marmonier, P., Valett, M., & Vervier, P. (1998). Nutrient dynamics in the interface between surface waters and groundwaters. Freshwater Biology, 40, 427–451.CrossRefGoogle Scholar
  13. Department of the Environment (1995). Biodiversity: The UK steering group report, Vol 2: Action plans. London: HMSO.Google Scholar
  14. Dillon, K., Burnett, W., Kim, G., Chanton, J., Corbett, D. R., Elliott, K., et al. (2003). Groundwater flow and phosphate dynamics surrounding a high discharge wastewater disposal well in Florida Keys. Journal of Hydrology, 284, 193–210.CrossRefGoogle Scholar
  15. Doucet, F. J., Maguire, L., & Lead, J. R. (2004). Size fractionation of aquatic colloids and particles by cross-flow filtration: Analysis by scanning electron and atomic force microscopy. Analytical Chimica Acta, 522, 59–71.CrossRefGoogle Scholar
  16. Eisenreich, S. J., Bannerman, R. T., & Armstrong, D. E. (1975). A simplified phosphorus analytical technique. Environmental Letters, 9, 45–53.CrossRefGoogle Scholar
  17. Elsbury, K. E., Paytan, A., Ostrom, N. E., Kendall, C., Young, M. B., McLaughlin, K., et al. (2009). Using oxygen isotopes of phosphate to trace phosphorus sources and cycling in Lake Erie. Environmental Science & Technology, 43(9), 3108–3114. doi:10.1021/es8034126.CrossRefGoogle Scholar
  18. Eyrolle, F., & Charmasson, S. (2004). Importance of colloids in the transport within the dissolved phase (<450 nm) of artificial radionuclides from the Rhône river towards the Gulf of Lions (Mediterranean Sea). Journal of Environmental Radioactivity, 72, 273–286.CrossRefGoogle Scholar
  19. Fernald, A. G., Wigington, P. J., Jr., & Landers, D. H. (2001). Transient storage and hyporheic flow along the Willamette River, Oregon: Field measurements and model estimates. Water Resources Research, 37(6), 1681–1694.CrossRefGoogle Scholar
  20. Filella, M., Deville, C., Chanudet, V., & Vignati, D. (2006). Variability of the colloidal molybdate reactive phosphorus concentrations in freshwaters. Water Research, 40, 3185–3192.CrossRefGoogle Scholar
  21. Findlay, S., Strayer, D., Goumbala, C., & Gould, K. (1993). Metabolism of streamwater dissolved organic carbon in the shallow hyporheic zone. Limnology and Oceanography, 38, 1493–1499.CrossRefGoogle Scholar
  22. Flynn, N. J., Snook, D. L., Wade, A. J., & Jarvie, H. P. (2002). Macrophyte and periphyton dynamics in a UK Cretaceous chalk stream: The River Kennet, a tributary of the Thames. The Science of the Total Environment, 282–283, 143–157.CrossRefGoogle Scholar
  23. Gooddy, D. C., Darling, W. G., Abesser, C., & Lapworth, D. J. (2006). Using chlorofluorocarbons (CFCs) and sulphur hexafluoride (SF6) to characterise groundwater movement and residence times in a lowland chalk catchment. Journal of Hydrology, 330, 44–52. doi:10.1016/j.jhydrol.2006.04.011.CrossRefGoogle Scholar
  24. Gooddy, D. C., Mathias, S. A., Harrison, I., Lapworth, D. J., & Kim, A. W. (2007). The significance of colloids in the transport of pesticides through chalk. The Science of the Total Environment, 385, 262–271.CrossRefGoogle Scholar
  25. Gooseff, M. N., McKnight, D. M., Lyons, W. B., & Blum, A. E. (2002). Weathering reactions and hyporheic exchange controls on stream water chemistry in a glacial meltwater in the McMuurdo Dry Valleys. Water Resources Research, 38(12), 1279. doi:10.1029/2001WR000834.CrossRefGoogle Scholar
  26. Grapes, T. R., Bradley, C., & Petts, G. E. (2005). Dynamics of river-aquifer interaction along a chalk stream: The River Lambourn, UK. Hydrological Processes, 19, 2035–2053.CrossRefGoogle Scholar
  27. Greenwald, M. J., Bowden, W. B., Gooseff, M. N., Zarnetske, J. P., McNamara, J. P., Bradford, J. H., et al. (2008). Hyporheic exchange and water chemistry of two arctic tundra streams of contrasting geomorphology. Journal of Geophysical Research, 113, G02029. doi:10.1029/2007JG000549.CrossRefGoogle Scholar
  28. Griffiths, J., Binley, A., Crook, N., Nutter, J., Young, A., & Fletcher, S. (2006). Streamflow generation in the Pang and Lambourn catchments, Berkshire, UK. Journal of Hydrology, 330, 71–83.CrossRefGoogle Scholar
  29. Grimm, N. B., & Fisher, S. G. (1984). Exchange between interstitial and surface water: Implications for stream metabolism and nutrient cycling. Hydrobiologia, 111, 219–228.CrossRefGoogle Scholar
  30. Guéguen, C., Belin, C., & Dominik, J. (2002). Organic colloid separation in contrasting aquatic environments with tangential flow filtration. Water Research, 36, 1677–1684.CrossRefGoogle Scholar
  31. Haygarth, P. M., Warwick, M. S., & House, A. W. (1997). Size distribution of colloidal molybdate reactive phosphorus in river waters and soil solution. Water Research, 31, 439–448.CrossRefGoogle Scholar
  32. Hill, A. R. (1996). Nitrate removal in stream riparian zones. Journal of Environmental Quality, 25, 743–755.CrossRefGoogle Scholar
  33. Holman, I. P., Whelan, M. J., Howden, N. J. K., Bellamy, P. H., Willby, N. J., Rivas-Casado, M., et al. (2008). Phosphorus in groundwater—An overlooked contributor to eutrophication? Hydrological Processes, 22, 5121–5127.CrossRefGoogle Scholar
  34. Holman, I. P., Howden, N. J. K., Bellamy, P., Willby, N., Whelan, M. J., & Rivas-Casado, M. (2010). An assessment of the risk to surface water ecosystems of groundwater P in the UK and Ireland. The Science of the Total Environment, 408, 1847–1857.CrossRefGoogle Scholar
  35. Huang, G. H., & Xia, J. (2001). Barriers to sustainable water-quality management. Journal of Environmental Management, 61, 1–23.CrossRefGoogle Scholar
  36. Jarvie, H. P., Neal, C., Williams, R. J., Neal, M., Wickham, H., Hill, L. K., et al. (2002). Phosphorus sources, speciation and dynamics in a lowland eutrophic chalk river; the River Kennet, UK. The Science of the Total Environment, 282/283, 175–203.CrossRefGoogle Scholar
  37. Jarvie, H. P., Neal, C., Jürgens, M. D., Sutton, E. J., Neal, M., Wickham, H. D., et al. (2006a). Within-river nutrient processing in chalk streams: The Pang and Lambourn UK. Journal of Hydrology, 330, 101–125.CrossRefGoogle Scholar
  38. Jarvie, H. P., Neal, C., & Withers, P. J. A. (2006b). Sewage-effluent phosphorus: A greater risk to river eutrophication than agricultural sources. Science of the Total Environment, 360, 246–253.CrossRefGoogle Scholar
  39. Jones, J. B., Fisher, S. G., & Grimm, N. B. (1995). Vertical hydrologic exchange and ecosystem metabolism in a Sonoran Desert stream. Ecology, 76, 942–952.CrossRefGoogle Scholar
  40. Karageorgiou, K., Paschalis, M., & Anastassakis, G. N. (2007). Removal of phosphate species from solution by adsorption onto calcite used as natural adsorbent. Journal of Hazardous Materials, 139, 447–452.CrossRefGoogle Scholar
  41. Kinniburgh, J. H., & Barnett, M. (2010). Orthophosphate concentrations in the River Thames: Reductions in the past decade. Water Environment Journal, 24, 107–115.CrossRefGoogle Scholar
  42. Krause, S., & Bronstert, A. (2007). Water balance simulation and Groundwater—Surface water interactions in a mesoscale lowland river catchment in Northwestern Germany. Hydrological Processes, 21, 169–184.CrossRefGoogle Scholar
  43. Krause, S., Bronstert, A., & Zehe, E. (2007). Groundwater–surface water interactions in a North German laowland floodplain—Implication for the river discharge dynamics and riparian water balance. Journal of Hydrology, 347, 404–417.CrossRefGoogle Scholar
  44. Kreller, D. I., Gibson, G., vanLoon, G. W., & Hornton, J. H. (2002). Chemical force microscopy investigation of phosphate adsorption on the surfaces of iron (III) oxyhydroxide particles. Journal of Colloid and Interface Science, 254, 205–213.CrossRefGoogle Scholar
  45. Lapworth, D. J., & Kinniburgh, D. G. (2009). An R script for visualising and analysing fluorescence excitation–emission matrices (EEMs). Computers & Geoscience. doi:10.1016/j.cageo.2008.10.013.Google Scholar
  46. Lapworth, D. J., Shand, P., Abesser, C., Darling, W. G., Haria, A. H., Evans, C. D., et al. (2008). Groundwater nitrogen composition and transformation within a moorland catchment, mid-Wales. Science of the Total Environment, 390, 241–254.CrossRefGoogle Scholar
  47. Lapworth, D. J., Gooddy, D. C., Allen, D., & Old, G. H. (2009). Understanding groundwater, surface water and hyporheic zone biogeochemical processes in a chalk catchment using fluorescence properties of dissolved and colloidal organic matter. Journal of Geophysical Research. doi:10.1029/2009JG000921.Google Scholar
  48. Liu, R., & Lead, J. R. (2006). Partial validation of cross flow ultrafiltration by atomic force microscopy. Analytical Chemistry, 78, 8105–8112.CrossRefGoogle Scholar
  49. McKnight, D. M., Hornberger, G. M., Bencala, K. E., & Boyer, E. W. (2002). In-stream sorption of fulvic acid in an acidic stream: A stream-scale transport experiment. Water Resources Research. doi:10.1029/2001WR0000269.Google Scholar
  50. McLaughlin, K., Cade-Menun, B. J., & Paytan, A. (2006). The oxygen isotopic composition of phosphate in Elkhorn Slough, California: A tracer for phosphate sources. Estuarine, Coastal and Shelf Science, 70, 499–506.CrossRefGoogle Scholar
  51. Mikutta, C., Lang, F., & Kaupenjohann, M. (2006). Kinetics of phosphate sorption to polygalacturonar-coated oethite. Soil Science Society of America Journal. doi:10.2136/sssaj2005.0250.Google Scholar
  52. Mopper, K., Feng, Z., Bentijen, S. B., & Chen, R. F. (1996). Effects of cross-flow filtration on the absorption and fluorescence properties of seawater. Marine Chemistry, 55, 53–74.CrossRefGoogle Scholar
  53. Murphy, J., & Riley, J. P. (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27, 31–36.CrossRefGoogle Scholar
  54. Neal, C. (2001). The potential for phosphorus pollution remediation by calcite precipitation in UK freshwaters. Hydrology and Earth Systems Science, 5(1), 119–131.CrossRefGoogle Scholar
  55. Neal, C., & Jarvie, H. P. (2005). Agriculture, community, river eutrophication and the water framework directive. Hydrological Processes, 19, 1895–1901.CrossRefGoogle Scholar
  56. Neal, C., Neal, M., & Wickham, H. (2000a). Phosphate measurements in natural waters: Two examples of analytical problems associated with silica interference using phosphomolybdic acid methodologies. The Science of the Total Environment, 251/252, 511–522.CrossRefGoogle Scholar
  57. Neal, C., Neal, M., Wickham, H., & Harrow, M. (2000b). The water quality of a tributary of the Thames, the Pang, Southern England. The Science of the Total Environment, 251(252), 459–475.CrossRefGoogle Scholar
  58. Neal, C., Neal, M., Leeks, G. J. L., Old, G. H., Hill, L., & Wickham, H. (2006). Suspended sediment and particulate phosphorus in surface waters of the upper Thames Basin, UK. Journal of Hydrology, 330, 142–154.CrossRefGoogle Scholar
  59. Ohno, T. (2002). Fluorescence inner-filtering correction for determining the humification index of dissolved organic matter. Environmental Science & Technology, 36, 742–746.CrossRefGoogle Scholar
  60. Palmer-Felgate, E. J., Jarvie, H. P., Williams, R. J., Mortimer, R. J. G., Loewenthal, M., & Neal, C. (2008). Phosphorus dynamics and productivity in a sewage-impacted lowland chalk stream. Journal of Hydrology, 351, 87–97.CrossRefGoogle Scholar
  61. Pretty, J. L., Hildrew, A. G., & Trimmer, M. (2006). Nutrient dynamics in relation to surface–subsurface hydrological exchange in a groundwater-fed chalk stream. Journal of Hydrology, 330, 84–100.CrossRefGoogle Scholar
  62. R Development Core Team (2010). The R foundation for statistical computing. Vienna: Vienna University of Technology.Google Scholar
  63. Rassam, D. W., Fellows, C. S., De Hayr, R., Hunter, H., & Bloesch, P. (2006). The Hydrology of riparian buffer zones; two case studies in an ephemeral and perennial stream. Journal of Hydrology, 325, 308–324.CrossRefGoogle Scholar
  64. Ross, J. M., & Sherrell, R. M. (1999). The role of colloids in trace metal transport and adsorption behavior in New Jersey Pinelands streams. Limnology and Oceanography, 44, 1019–1034.CrossRefGoogle Scholar
  65. Ryan, J. N., & Gschwend, P. M. (1990). Colloid mobilisation in two Atlantic coastal plain aquifers: Field studies. Water Resources Research, 26, 307–322.CrossRefGoogle Scholar
  66. Sear, D. A., Armitage, P. D., & Dawson, F. H. (1999). Groundwater dominated rivers. Hydrological Processes, 13, 255–276.CrossRefGoogle Scholar
  67. Shand, C. A., Smith, S., Edwards, A. C., & Fraser, A. R. (2000). Distribution of phosphorus in particulate, colloidal and molecular-sized fractions of soil solutions. Water Research, 34, 1278–1284.CrossRefGoogle Scholar
  68. Sondergaard, M., & Jeppesen, E. (2007). Anthropogenic impacts on lake and stream ecosystems, and approaches to restoration. Journal of Applied Ecology, 44, 1089–1094.CrossRefGoogle Scholar
  69. Stedmon, C. A., Markager, S., & Bro, R. (2003). Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy. Marine Chemistry, 82, 239–254.CrossRefGoogle Scholar
  70. Stumm, W. (1977). Chemical interaction in particle separation. Environmental Science & Technology, 11, 1066–1070.CrossRefGoogle Scholar
  71. Vervier, P., Bonvallet-Garay, S., Sauvage, S., Valett, H. M., & Sanchez-Perez, J.-M. (2009). Influence of hyporheic zone on phosphorus dynamics of a large gravel-bed river, Garonne River, France. Hydrological Processes, 23, 1801–1812.CrossRefGoogle Scholar
  72. Walling, D. E., Collins, A. L., & Stroud, R. W. (2008). Tracing suspended sediment and particulate phosphorus sources in catchments. Journal of Hydrology, 350, 274–289.CrossRefGoogle Scholar
  73. Water Framework Directive, Council of European Communities. Establishing a framework for community action in the field of water policy (WFD;2000/60/EC). Official Journal of EC L327, December 2000.Google Scholar
  74. Wheater, H. S., & Peach, D. (2004). Developing interdisciplinary science for integrated catchment management: The UK Lowland Catchment Research (LOCAR) programme. International Journal of Water Resources Development, 20, 369–385.CrossRefGoogle Scholar
  75. Winter, T. C., Harvey, J. W., Franke, O. L., & Alley, W. M. (1998). Groundwater and surface water—A single resource. US Geological Survey Circular 1139. US Geological Survey.Google Scholar
  76. Withers, P. J. A., & Jarvie, H. P. (2008). Delivery and cycling of phosphorus in rivers: A review. The Science of the Total Environment, 400, 379–395.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. / British Geological Survey-NERC 2010

Authors and Affiliations

  • Dan J. Lapworth
    • 1
  • Daren C. Gooddy
    • 1
  • Helen P. Jarvie
    • 2
  1. 1.British Geological SurveyWallingfordUK
  2. 2.Centre for Ecology and HydrologyWallingfordUK

Personalised recommendations