Water, Air, & Soil Pollution

, Volume 218, Issue 1–4, pp 145–155 | Cite as

The Effect of Lignite and Comamonas testosteroni on Pentachlorophenol Biodegradation and Soil Ecotoxicity

  • Marianna Vítková
  • Katarína Dercová
  • Jana Molnárová
  • Lívia Tóthová
  • Bystrík Polek
  • Jana Godočíková
Article

Abstract

Biodegradation of pentachlorophenol (PCP) in soil by autochthonous microflora and in soil bioaugmented by the bacterial strain Comamonas testosteroni CCM 7530 was studied. Subsequent addition of lignite, an abundant source of humic acids, has also been investigated as possible sorbent for PCP immobilization. Biodegradation of PCP and number of colony-forming units were determined in the three types of soil, haplic chernozem, haplic fluvisol, and haplic arenosol, freshly spiked with PCP and amended with tested sorbent. The enhancing effect of sorbent addition and bioaugmentation on PCP biodegradation depended mainly on the soil type and the initial PCP concentration. Microbial activity resulted in biotransformation of PCP into certain potentially toxic substances, probably lower chlorinated phenols that are more soluble than PCP, and therefore more toxic toward present biota. Therefore, it was necessary to monitor soil ecotoxicity during biodegradation. Addition of lignite resulted in a significant improvement of PCP biodegradation and led to a considerable decrease of soil toxicity especially in bioaugmented soils. The method could potentially serve as a promising technique in remediation technology for reducing high initial PCP content in contaminated soils.

Keywords

Ecotoxicity Bioaugmentation Biodegradation Lignite Humic acids Pentachlorophenol 

Notes

Acknowledgement

Financial support from the Scientific Grant Agency of Ministry of Education of Slovak Republic and Slovak Academy of Sciences VEGA (Grant No. 1/4357/07 and 2/008/08) is gratefully acknowledged.

References

  1. Bollag, J. M. (2002). Immobilization of pesticides in soil through enzymatic reactions. In N. Agathos & W. Reineke (Eds.), Biotechnology for the environment: Soil remediation ((pp, Vol. 3A, pp. 93–101). Dordrecht: Kluwer.Google Scholar
  2. Clapp, C. E., Hayes, M. H. B., Senesi, N., Bloom, P. R., & Jardine, P. M. (2001). Humic substances and chemical contaminants. Madison: Soil Science Society of America.Google Scholar
  3. De Paoli, F., & Kukkonen, J. (1997). Binding of organic pollutants to humic and fulvic acids: influence of pH and the structure of humic material. Chemosphere, 34(8), 1693–1704.CrossRefGoogle Scholar
  4. Dercová, K., Vrana, B., Baláž, Š., & Šándorová, A. (1996). Biodegradation and evaporation of polychlorinated biphenyls (PCBs) in liquid media. Journal of Industrial Microbiology & Biotechnology, 16, 325–329.Google Scholar
  5. Dercová, K., Čertík, M., Maľová, A., & Sejáková, Z. (2004). Effect of chlorophenols on the membrane lipids of bacterial cells. International Biodeterioration and Biodegradation, 54, 261–254.CrossRefGoogle Scholar
  6. Dercová, K., Sejáková, Z., Skokanová, M., Barančíková, G., & Makovníková, J. (2006). Potential use of organomineral complex (OMC) for bioremediation of pentachlorophenol (PCP) in soil. International Biodeterioration and Biodegradation, 58(3–4), 248–253.CrossRefGoogle Scholar
  7. Dercová, K., Sejáková, Z., Skokanová, M., Barančíková, G., & Makovníková, J. (2007). Bioremediation of soil contaminated with pentachlorophenol (PCP) using humic acids bound on zeolite. Chemosphere, 66, 783–790.CrossRefGoogle Scholar
  8. Eglite, L., Klavins M. (2002). Sorption of humic substances on aquifer material and soil components. In: Proceedings of the 20th Anniversary IHSS Conference Humic Substances: Nature’s most versatile materials, Boston, USA. pp. 146–149Google Scholar
  9. Escher, B. I., Behra, R., Eggen, R. I. L., & Fent, K. (1997). Molecular mechanisms in ecotoxicology: an interplay between environmental chemistry and biology. Chimia, 51, 915–921.Google Scholar
  10. Feifičová, D., Čejková, A., Masák, J., Siglová, M., Jirků, V. (2005a). Sorption of humic acids onto bacterial surface: factors influencing this process. In N. Kalogerakis (Ed.), In: Proceedings of the 3rd European Bioremediation Conference (p. 143), Crete, Chania, Greece.Google Scholar
  11. Feifičová, D., Čejková, A., Masák, J., Siglová, M. (2005b). The effect of humic substances on degradation of phenolic compounds. In J. Burkhard, O. Halousková (Eds.). In: Proceedings of the Conference Remediation technologies VIII (p. 123), Uherské Hradiště, Czech Republic.Google Scholar
  12. Field, J. A., & Sierra-Alvarez, R. (2008). Microbial degradation of chlorinated phenols. Reviews in Environmental Science & Biotechnology, 7, 211–241.CrossRefGoogle Scholar
  13. Haluška, Ľ., Barančíková, G., Baláž, Š., Dercová, K., Vrana, B., Paz-Weisshaar, M., et al. (1995). Degradation of PCB in different soils inoculated Alcaligenes xylosoxidans. The Science of the Total Environment, 175, 275–285.CrossRefGoogle Scholar
  14. Hatcher, P. G., Schnitzer, M., Dennis, L. W., & Maciel, G. E. (1981). Aromaticity of humic substances in soils. Soil Science Society of America Journal, 45, 1089–1094.CrossRefGoogle Scholar
  15. ISO 20079 (2005). Water quality. Determination of the toxic effect of water constituents and waste water to duckweed (Lemna minor)—Duckweed growth inhibition test (p. 23).Google Scholar
  16. Kobza J., Fiala, K., Barančíková, G., Brečková, V., Búrik, V., Houšková, B., et al. (1999). Partial monitoring system—soil: obligatory methods of soil analyses. Bratislava, Slovakia: Soil Science and Conservation Research Institute. pp. 95–97Google Scholar
  17. Malcolm, M. L. (1990). The uniqueness of humic substances in each of soil, stream and marine environments. Analytica Chimica Acta, 232, 19–30.CrossRefGoogle Scholar
  18. McAllister, K. A., Hung, H., & Trevors, J. T. (1996). Microbial degradation of pentachlorophenol. Biodegradation, 7, 1–40.CrossRefGoogle Scholar
  19. Odokuma, L. O., & Dickson, A. A. (2003). Bioremediation of crude oil polluted tropical rain forest soil. Global Journal of Environmental Sciences, 2, 29–40.Google Scholar
  20. Olivier, S., Scragg, A. H., & Morrison, J. (2003). The effect of chlorophenols on the growth of Chlorella VT-1. Enzyme and Microbial Technology, 32, 837–842.Google Scholar
  21. Otte, M., Comeau, Y., Samson, R., & Greer, C. W. (1999). Enhancement of pentachlorophenol biodegradation using organic and inorganic supports. Bioremediation Journal, 3(1), 35–45.CrossRefGoogle Scholar
  22. Pansu, M., Gautheyrou, J. (2006). Titration of main functional groups. In Handbook of soil analysis (pp. 408–410). Berlin, Germany: Springer-Verlag.Google Scholar
  23. Park, J. W., Dec, J., Kim, J. E., & Bollag, J. M. (2000). Dehalogenation of xenobiotics as a consequence of binding to humic materials. Archives of Environmental Contamination and Toxicology, 38(4), 405–410.CrossRefGoogle Scholar
  24. Pu, X., & Cutright, T. J. (2006). Sorption-desorption behaviour of PCP on soil organic matter and clay minerals. Chemosphere, 64, 972–983.CrossRefGoogle Scholar
  25. Sarkar, J. M., Malcom, R. L., & Bollag, J. M. (1988). Enzymatic coupling of 2, 4-dichlorphenol to stream fulvic acid in the presence of oxidoreductases. Soil Science Society of America Journal, 52, 688–694.CrossRefGoogle Scholar
  26. Seki, H., & Suzuki, A. (1995). Adsorption of heavy metal ions onto insolubilized humic acid. Journal of Colloid and Interface Science, 171, 490–494.CrossRefGoogle Scholar
  27. Senesi, N. (1992). Binding mechanisms of pesticides to soil humic substances. The Science of the Total Environment, 123–124, 63–76.Google Scholar
  28. Shaw, L. J., Beaton, Y., Glover, L. A., Killham, K., Osborn, D., & Meharg, A. A. (2000). Bioavailability of 2, 4-dichlorophenol associated with soil water-soluble humic material. Environmental Science & Technology, 34, 4721–4726.CrossRefGoogle Scholar
  29. Swift, R.S. (1996). Organic matter characterization. In Methods of Soil Analysis, Part 3 (pp. 1011). Chemical Methods-SSSA, Book Series 5.Google Scholar
  30. Tan, K.H. (2003a). Chemical composition of humic matter. In Humic matter in soil and the environment (pp. 84–87). New York: Marcel Dekker, Inc.Google Scholar
  31. Tan, K. H. (2003b). Humic matter in soil and the environment - principles and controversies (pp. 299–300). New York: Marcel Dekker.CrossRefGoogle Scholar
  32. Taylor, M. D., & Theng, B. K. G. (1995). Sorption of cadmium by complexes of kaolinite with humic acid. Communications in Soil Science and Plant Analysis, 26, 765–776.CrossRefGoogle Scholar
  33. Tuomel, M., Lyytikäinen, M., Oivanen, P., & Hataka, A. (1999). Mineralization and conversion of pentachlorophenol (PCP) in soil inoculated with the white-rot fungus. Soil Biology and Biochemistry, 31, 65–74.CrossRefGoogle Scholar
  34. Veselá, L., Kubal, M., Kozler, J., & Cinemania, P. (2005). Structure and properties of natural humic substances of the oxyhumolite type. Chemicke Listy, 99(10), 711–717.Google Scholar
  35. Wen, B., Li, R., Zhang, S., Shan, X., Fang, J., Xiao, K., et al. (2009). Immobilization of pentachlorophenol in soil using carbonaceous material amendments. Environmental Pollution, 157, 968–974.CrossRefGoogle Scholar
  36. Wittmann, C., Zeng, A. P., & Deckwer, W. D. (1998). Physiological characterization and cultivation strategies of the pentachlorophenol-degrading bacteria Sphingomonas chlorophenolica RA2 and Mycobacterium chlorophenolicum PCP-1. Journal of Industrial Microbiology & Biotechnology, 21, 315–321.CrossRefGoogle Scholar
  37. Zhang, M., Alva, A. K., Li, C., & Calvert, D. V. (1997). Chemical association of Cu, Zn, Mn and Pb in selected sandy citrus soil. Soil Science, 162, 181–188.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Marianna Vítková
    • 1
  • Katarína Dercová
    • 1
  • Jana Molnárová
    • 1
  • Lívia Tóthová
    • 2
  • Bystrík Polek
    • 3
  • Jana Godočíková
    • 3
  1. 1.Faculty of Chemical and Food Technology, Department of Biochemical TechnologySlovak University of TechnologyBratislavaSlovak Republic
  2. 2.National Water Reference Laboratory for SlovakiaWater Research InstituteBratislavaSlovak Republic
  3. 3.Institute of Molecular BiologyBratislavaSlovak Republic

Personalised recommendations