Advertisement

Water, Air, & Soil Pollution

, Volume 217, Issue 1–4, pp 233–244 | Cite as

Biosorption of Colour-Imparting Substances in Biologically Treated Pulp Mill Effluent Using Aspergillus niger Fungal Biomass

  • Sarah Grainger
  • George Yuzhu Fu
  • Eric R. Hall
Article

Abstract

Biosorption has potential to be an economical colour removal technology. As such, the colour removal potential of inactivated Aspergillus niger biomass was investigated for the treatment of activated sludge-treated pulp mill effluent from a northern bleached softwood kraft mill. Biomass pretreatment methods, effects of initial pH of the effluent and preparative biomass washing methods were examined. The most effective pretreatment method was found to be simple autoclaving of the biomass and this approach was applied in subsequent kinetic and isotherm batch studies. It was also found that the pH of the wastewater prior to addition of the biomass affected the biosorption rate and the solubility of chromophores in pulp mill effluent. The results also indicated that biomass washing methods reduced the quantity of organic matter leached from the fungal biomass during application. The kinetic study revealed that colour removal by biosorption occurred most readily in the first 8 h and could be described adequately by both the Lagergren and Ho et al. models. The maximum colour removal was over 900 TCU, with a biomass dose of about 20 g/L. The isotherm study data were fitted with the BET isotherm model. The results indicated that adsorption occurred in a multi-layer fashion and that physical adsorption was the main mechanism contributing to the biosorption. Therefore, dead A. niger biomass was concluded to be a promising alternative for colour removal from pulp mill effluent.

Keywords

Biosorption Fungus Aspergillus niger Colour removal Pulp mill effluent Batch studies 

Notes

Acknowledgements

Throughout the laboratory work, the assistance and guidance of Susan Harper and Paula Parkinson has been vital and is greatly appreciated. This research was funded by the Natural Sciences and Engineering Research Council (NSERC) of Canada.

References

  1. American Public Health Association, American Water Works Association & Water Pollution Control Federation. (1998). Standard methods for examination of water and wastewater (20th ed.). Washington: American Public Health Association.Google Scholar
  2. Bajpai, P. (2001). Microbial degradation of pollutants in pulp mill effluents. Advances in Applied Microbiology, 48, 79–134.CrossRefGoogle Scholar
  3. Banat, I. M., Nigam, P., Singh, D., & Marchant, R. (1996). Microbial decolorization of textile-dye-containing effluents: A review. Bioresource Technology, 58(3), 217–227.CrossRefGoogle Scholar
  4. Banks, C. J., & Parkinson, M. E. (1992). The mechanism and application of fungal biosorption to color removal from raw waters. Journal of Chemical Technology and Biotechnology, 54(2), 192–196.Google Scholar
  5. Do, D. D. (1998). Adsorption analysis: Equilibria and kinetics. London: Imperial College Press.CrossRefGoogle Scholar
  6. Fu, Y. Z., & Viraraghavan, T. (2000). Removal of a dye from an aqueous solution by the fungus Aspergillus niger. Water Quality Research Journal of Canada, 35(1), 95–111.Google Scholar
  7. Fu, Y. Z., & Viraraghavan, T. (2001a). Fungal decolorization of dye wastewaters: A review. Bioresource technology, 79(3), 251–262.CrossRefGoogle Scholar
  8. Fu, Y. Z., & Viraraghavan, T. (2001b). Removal of CI Acid Blue 29 from an aqueous solution by Aspergillus niger. AATCC Review, 1(1), 36–40.Google Scholar
  9. Fu, Y. Z., & Viraraghavan, T. (2002). Dye biosorption sites in Aspergillus niger. Bioresource Technology, 82(2), 139–145.CrossRefGoogle Scholar
  10. Gallagher, K. A., Healy, M. G., & Allen, S. J. (1997). Biosorption of synthetic dye and metal ions from aqueous effluents using fungal biomass. In D.L. Wise (Ed.), Third International Symposium of the International Society for Environmental Biotechnology (pp. 27). Elsevier Science.Google Scholar
  11. Ho, Y. S. (2004). Citation review of Lagergren kinetic rate equation on adsorption reactions. Scientometrics, 59(1), 171–177.CrossRefGoogle Scholar
  12. Ho, Y. S., Wase, D. A. J., & Forster, C. F. (1996). Kinetic studies of competitive heavy metal adsorption by sphagnum moss peat. Environmental Technology, 17(1), 71–77.CrossRefGoogle Scholar
  13. Jacksonmoss, C. A., Maree, J. P., & Wotton, S. C. (1992). Treatment of bleach plant effluent with the biological granular activated carbon process. Water Science and Technology, 26(1–2), 427–434.Google Scholar
  14. Kapoor, A., Viraraghavan, T., & Cullimore, D. R. (1999). Removal of heavy metals using the fungus Aspergillus niger. Bioresource Technology, 70(1), 95–104.CrossRefGoogle Scholar
  15. Kemeny, T. E., & Banerjee, S. (1997). Relationships among effluent constituents in bleached kraft pulp mills. Water Research, 31(7), 1589–1594.CrossRefGoogle Scholar
  16. Lagergren, S. (1898). About the theory of so-called adsorption of soluble substances. Kungliga Swenska Vetenskapsakademiens. Handlingar, 24(4), 1–39.Google Scholar
  17. Mou, D. G., Lim, K. K., & Shen, H. P. (1991). Microbial agents for decolorization of dye waste-water. Biotechnology Advances, 9(4), 613–622.CrossRefGoogle Scholar
  18. Rao, J. R. (2001). Biosorption of phenol by Aspergillus niger biomass. Master Thesis, Saskatchewan: The University of Regina.Google Scholar
  19. Sawyer, C., McCarty, P., & Parkin, G. (2003). Chemistry for environmental engineering and science (5th ed.). New York: McGraw-Hill.Google Scholar
  20. Sevimli, M. F., & Kinaci, C. (2002). Decolorization of textile wastewater by ozonation and fenton’s process. Water Science Technology, 45, 279–286.Google Scholar
  21. Springer, A. (1986). Environmental industrial control: Pulp and paper industry. New York: Wiley.Google Scholar
  22. Zhou, J. L., & Banks, C. J. (1991). Removal of humic acid fractions by Rhizopus arrhizus: Uptake and kinetic-studies. Environmental Technology, 12(10), 859–869.CrossRefGoogle Scholar
  23. Zhou, J. L., & Banks, C. J. (1993). Mechanism of humic-acid color removal from natural-waters by fungal biomass biosorption. Chemosphere, 27(4), 607–620.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Sarah Grainger
    • 1
  • George Yuzhu Fu
    • 2
  • Eric R. Hall
    • 3
  1. 1.Valley Stewardship NetworkViroquaUSA
  2. 2.Department of Construction Management and Civil Engineering TechnologyGeorgia Southern UniversityStatesboroUSA
  3. 3.Department of Civil EngineeringThe University of British ColumbiaVancouverCanada

Personalised recommendations