Water, Air, & Soil Pollution

, Volume 216, Issue 1–4, pp 679–691 | Cite as

Complexation Study of Humic Acids Extracted from Forest and Sahara Soils with Zinc (II) and Cadmium (II) by Differential Pulse Anodic Stripping Voltammetry (DPASV) and Conductimetric Methods

  • Achour Terbouche
  • Safia Djebbar
  • Ouassini Benali-Baitich
  • Didier Hauchard
Article

Abstract

The complexation of heavy metals, present in their dissolved state at relevant trace levels, with new humic acids (HAs) isolated from Yakouren forest (YHA) and Sahara (Tamenrasset: THA) soils has been studied by differential pulse anodic stripping voltammetry (DPASV) at a hanging mercury drop electrode and conductimetry methods. After extraction and purification, humic acids were characterized by elemental analyses, atomic absorption spectroscopy, FT-IR, and solution state 13C-NMR. Taking Zn(II) and Cd(II) as examples, the aim of this study was to gain direct information on the general level of importance of humic acids for the speciation of certain heavy metals in soil to determine the complexing capacities of AHs and stability constant of the complexes formed with these metal ions and to compare the complexation capacity of forest and Sahara soils with the commercial humic acid and other published AHs. The results determined by conductimetry method are interpreted using an excess function (∆k) which related the conductivity of the mixture and of the separated components. A positive value of this function is obtained. It indicates the complexation of humic acids with metallic ions. The DPASV method was used for determining metal ion complexing capacities and stability constants of metal ion complexes of HAs in solution at pH 7. In both types of soils, the commercial humic acid (CHA) is less efficient in complexing Zn(II) and Cd(II) than THA and YHA and the complexing capacity (CCM) decreases in the order: THA > YHA > CHA. In general, the results of complexing capacity for all humic acids and stability constants of Zn(II) and Cd(II) complexes found by DPASV method showed good correlation with those of conductimetry method. CCM of THA and YHA calculated by DPASV were higher than those of CHA and the other natural HAs published in the literature at pH 7 basing on these results.

Keywords

Metal ion complexation Soil humic acids Complexing capacities DPASV Conductimetry 

References

  1. Abate, G., & Masini, J. C. (2002). Complexation of Cd(II) and Pb(II) with humic acids studied by anodic stripping voltammetry using differential equilibrium functions and discrete site models. Organic Geochemistry, 33(10), 1171–1182. doi: 10.1016/S0146-6380(02)00087-6.CrossRefGoogle Scholar
  2. Arai, S., & Kumada, K. (1977). An interpretation of the conductometric titration curve of humic acid. Geoderma, 19(1), 21–35. doi: 10.1016/0016-7061(77)90011-8.CrossRefGoogle Scholar
  3. Artinger, R., Rabung, T., Kim, J. I., Sachs, S., Schmeide, K., Heise, K. H., et al. (2002). Humic colloid-borne migration of uranium in sand columns. Journal of Contaminant Hydrology, 58(1), 1–12. doi: 10.1016/S0169-7722(02)00032-3.CrossRefGoogle Scholar
  4. Benato, V. S., & Sc, M. (1999). Dissertation. Brazil: Universidade Federal de Santa Catarina.Google Scholar
  5. Buffle, J. (1988). Complexation reactions in aquatic systems: An Analytical Approach. Chichester: Wiley.Google Scholar
  6. Ceriotti, G., & Amarasiriwardena, D. (2009). A study of antimony complexed to soil-derived humic acids and inorganic antimony species along a Massachusetts highway. Journal of Microchemical, 91(1), 85–93. doi: 10.1016/j.microc.2008.08.010.CrossRefGoogle Scholar
  7. Claret, F., Schafer, T., Rabung, T., Wolf, M., Bauer, A., & Buckau, G. (2005). Differences in properties and Cm(III) complexation behavior of isolated humic and fulvic acid derived from Opalinus clay and Callovo-Oxfordian argillite. Applied Geochemistry, 20(6), 1158–1168. doi: 10.1016/j.apgeochem.2005.01.008.CrossRefGoogle Scholar
  8. Cleven, R.M.F.J. (1984), Ph. D Thesis, Agricultural University of Wageningen, the Netherlands.Google Scholar
  9. Coles, C. A., & Yong, R. N. (2006). Humic acid preparation, properties and interactions with metals lead and cadmium. Engineering Geology, 85(1), 26–32. doi: 10.1016/j.enggeo.2005.09.024.CrossRefGoogle Scholar
  10. Corrado, G., Sanchez-Cortes, S., Francioso, O., & Garcia-Ramos, J. V. (2008). Surface-enhanced Raman and fluorescence joint analysis of soil humic acids. Analytica Chimica Acta, 616(1), 69–77. doi: 10.1016/j.aca.2008.04.019.CrossRefGoogle Scholar
  11. Elkins, K. M., & Nelson, D. J. (2001). Fluorescence and FT-IR spectroscopic studies of Suwannee river fulvic acid complexation with aluminum, terbium and calcium. Journal of Inorganic Biochemistry, 87(2), 81–96. doi: 10.1016/S0162-0134(01)00318-X.CrossRefGoogle Scholar
  12. Elkins, K. M., & Nelson, D. J. (2002). Spectroscopic approaches to the study of the interaction of aluminum with humic substances. Coordination Chemistry Reviews, 228(2), 205–225. doi: 10.1016/S0010-8545(02)00040-1.CrossRefGoogle Scholar
  13. Evangelou, V. P., & Marsi, M. (2001). Composition and metal ion complexation behaviour of humic fractions derived from corn tissue. Plant and Soil, 229(1), 13–24.CrossRefGoogle Scholar
  14. Florence, T. M. (1982). Development of physico-chemical speciation procedures to investigate the toxicity of copper, lead, cadmium and zinc towards aquatic biota. Analytica Chimica Acta, 141, 73–94.CrossRefGoogle Scholar
  15. Gao, K., Pearce, J., Jones, J., & Taylor, C. (1999). Interaction between peat, humic acid and aqueous metal ions. Environmental Geochemistry and Health, 21(1), 13–26.CrossRefGoogle Scholar
  16. Garcia-Mina, J. M. (2006). Stability, solubility and maximum metal binding capacity in metal–humic complexes involving humic substances extracted from peat and organic compost. Organic Geochemistry, 37(12), 1960–1972. doi: 10.1016/j.orggeochem.2006.07.027.CrossRefGoogle Scholar
  17. Garnier, C., Pižeta, I., Mounier, S., Benaim, J. Y., & Branica, M. (2004). Influence of the type of titration and of data treatment methods on metal complexing parameters determination of single and multi-ligand systems measured by stripping voltammetry. Analytica Chimica Acta, 505(2), 263–275. doi: 10.1016/j.aca.2003.10.066.CrossRefGoogle Scholar
  18. Ghatak, H., Mukhopadhyay, S. K., Jana, T. K., Sen, B. K., & Sen, S. (2004). Interactions of Cu (II) and Fe (III) with mangal humic substances studied by synchronous fluorescence spectroscopy and potentiometric titration. Wetlands Ecology and Management, 12(3), 145–155. doi: 10.1023/B:WETL.0000034068.68049.a3.CrossRefGoogle Scholar
  19. Gossart, P., Semmoud, A., Ruckebusch, C., & Huvenne, J. P. (2003). Multivariate curve resolution applied to Fourier transforms infrared spectra of macromolecules: structural characterisation of the acid form and the salt form of humic acids in interaction with lead. Analytica Chimica Acta, 477(2), 201–209. doi: 10.1016/S0003-2670(02)01415-0.CrossRefGoogle Scholar
  20. Grzybowski, W. (2000). Comparison between stability constants of cadmium and lead complexes with humic substances of different molecular weight isolated from Baltic Sea water. Oceanologia, 42(4), 473–482.Google Scholar
  21. Hayes, M. H. B. (1985). Humic substances in soil, sediment and water (pp. 329–362). New York: Wiley.Google Scholar
  22. Jansen, S. A., Varnum, J. M., Kolla, S., Paciolla, M. D., Sein, L. T., Nwabara, S., et al. (1997). In J. Drozd, S. S. Gonet, N. Sensesi, & J. Weber (Eds.), Metal uptake by metal free humic acid in the Role of Humic Substances in Ecosystems and in Environmental Protection. Wroclaw: Polish Society of Humic Substances.Google Scholar
  23. Kaemmerer, M., Guiresse, M., Revel, J. C., Koetz, P., Facal, P., & Rey, P. (1999). Conductimetric behaviour of humic acids with Cu(II) ions. Analusis, 27(5), 421–423. doi: 10.1051/analusis:1999270421.CrossRefGoogle Scholar
  24. Kaschl, A., Römheld, R., & Chen, Y. (2002a). Binding of cadmium, copper, and zinc to humic substances originating from municipal solid waste compost. Israel Journal of Chemistry, 42(1), 89–98.CrossRefGoogle Scholar
  25. Kaschl, A., Römheld, R., & Chen, Y. (2002b). Cadmium binding by fractions of dissolved organic matter and humic substances from municipal solid waste compost. Journal of Environmental Quality, 31, 1885–1892.CrossRefGoogle Scholar
  26. Kerndorff, H., & Schnitzer, M. (1980). Sorption of metals on humic acid. Geochimica et Cosmochimica Acta, 44, 1701–1708.CrossRefGoogle Scholar
  27. Kolawole, E. G., & Olayemi, J. Y. (1981). Binding of zinc ions to polymethacrylate anions at varying charge densities. Macromolecules, 14(4), 1050–1054. doi: 10.1021/ma50005a030.CrossRefGoogle Scholar
  28. Lamelas, C., Avaltroni, F., Benedetti, M., Wilkinson, K. J., & Slaveykova, V. I. (2005). Quantifying Pb and Cd complexation by alginates and the role of metal binding on macromolecular aggregation. Biomacromolecules, 6(5), 2756–2764. doi: 10.1021/bm050252y.CrossRefGoogle Scholar
  29. Livens, F. R. (1991). Chemical reactions of metals with humic material. Environmental Pollution, 70(3), 183–208.CrossRefGoogle Scholar
  30. Lu, X. Q., Hanna, J. V., & Johnson, W. D. (2000). Source indicators of humic substances: an elemental composition, solid state 13C CP/MAS NMR and Py-GC/MS study. Applied Geochemistry, 15, 1019–1033.CrossRefGoogle Scholar
  31. MacCarthy, P. (1989). In I. H. Suffet & P. MacCarthy (Eds.), Aquatic humic substances and their influence fate and treatment of pollutants (pp. 17–30). Washington: American Chemical Society.Google Scholar
  32. MacCarthy, P., & Rice, J. A. (1985). Spectroscopic methods (other than RMN) for determining functionality in humic substances. In G. R. Aiken, D. M. McKnight, R. L. Wershaw, & J. McCarthy (Eds.), Humic Substances in Soils, Sediments and Water (pp. 527–559). New York: Wiley.Google Scholar
  33. Malcolm, R. L. (1989). Applications of solid-state 13C-NMR spectroscopy to geochemical studies of humic substances. In M. H. B. Hayes, P. MacCarthy, R. L. Malcolm, & R. S. Swift (Eds.), Humic Substances: II (pp. 339–372). New York: Wiley.Google Scholar
  34. Nakashima, K., Xing, S., Gong, Y., & Miyajima, T. (2008). Characterization of humic acids by two-dimensional correlation fluorescence spectroscopy. Journal of Molecular Structure, 883–884, 155–159. doi: 10.1016/j.molstruc.2007.11.027.CrossRefGoogle Scholar
  35. Pardo, R., Barrado, E., Vega, M., Deran, L., & Tascon, M. L. (1994). Voltammetric complexation capacity of waters of the Pisuerga river. Water Research, 28(10), 2139–2146.CrossRefGoogle Scholar
  36. Plavsic, M., Cosovic, B., & Lee, C. (2006). Copper complexing properties of melanoidins and marine humic material. The Science of the Total Environment, 366(1), 310–319. doi: 10.1016/j.scitotenv.2005.07.011.CrossRefGoogle Scholar
  37. Pourret, O., & Martinez, R. E. (2000). Modelling lanthanide series binding sites on humic acid. Journal of Colloid and Interface Science, 330, 45–50. doi: 10.1016/j.jcis.2008.10.048. 2009.CrossRefGoogle Scholar
  38. Prado, A. G. S., Torres, J. D., & Faria, P. A. (2006). Studies on copper(II)- and zinc(II)-mixed ligand complexes of humic acid. Journal of Hazardous Materials, 136(3), 585–588. doi: 10.1016/j.jhazmat.2005.12.035.CrossRefGoogle Scholar
  39. Ram, N., & Raman, K. V. (1983). Characterization of metal-humic and -fulvic acid complexes. Pédologie, 33(2), 137–145.Google Scholar
  40. Rey, F., Machado, A. A. S. C., Arce, F., Ferreira, M. A., & Toja, A. (1995). Influence of the concentration on the conductimetric properties of a fulvic acid system. Analytica Chimica Acta, 304(3), 375–380. doi: 10.1016/0003-2670(94)00642-Y.CrossRefGoogle Scholar
  41. Riffaldi, R., Levi-Minzi, R., & Saviozzi, A. (1983). Humic fractions of organic wastes. Agriculture, Ecosystems & Environment, 10(4), 353–359. doi: 10.1016/01678809(83)90086-5.CrossRefGoogle Scholar
  42. Ruziç, I. (1982). Theoretical Aspects of the Direct Titration of Natural Waters and Its Information Yield for Trace Metal Speciation. Analytica Chimica Acta, 140(1), 99–113.CrossRefGoogle Scholar
  43. Saied, S., Siddique, A., Mumtaz, M., & Ali, K. (2005). Study of the heavy metal pollution treatment potential of the coal generated humic acid. Journal of Basic and Applied Sciences, 1(2), 101–103.Google Scholar
  44. Schnitzer, M., & Gupta, U. C. (1965). Determination of acidity in soil organic matter. Soil Science Society of America Journal, 29, 274–277.CrossRefGoogle Scholar
  45. Schnitzer, M., & Khan, S. U. (1972). Humic substances in the environment. New York: Marcel Dekker.Google Scholar
  46. Senesi, N. (1992). Metal-humic substance complexes in the environment. Molecular and mechanistic aspects by multiple spectroscopic approaches. In D. C. Adriano (Ed.), Biogeochemistry of trace metals (pp. 429–496). Boca Raton: Lewis.Google Scholar
  47. Senesi, N., Miano, T. M., & Brunetti, G. (1996). Humic substances in organic amendments and effects on native soil humic substances. In A. Piccolo (Ed.), Humic substances in terrestrial ecosystems (pp. 31–593). Amsterdam: Elsevier.Google Scholar
  48. Senesi, N., & Loffredo, E. (2005). Metal ion complexation by soil humic substances. In M. A. Tabatabai & D. L. Sparks (Eds.), Chemical processes in soils (pp. 563–617). Madison: Soil Science Society of America.Google Scholar
  49. Stevenson, F. J. (1994). Humus chemistry: genesis, composition, reactions (2nd ed.). New York: Wiley.Google Scholar
  50. Swift, R. S. (1996). In D. L. Sparks (Ed.), Methods of soil analysis, part 3, chemical methods (pp. 1011–1069). Madison: Soil Science Society of America and American Society of Agronomy.Google Scholar
  51. Terbouche, A., Djebbar, S., Benali-Baitich, O., & Bouet, G. (2010). Characterization and complexing capacity of humic acid extracted from Yakouren soil with heavy metals by conductimetry and quenching of fluorescence. Soil and Sediment Contamination, 19(1), 21–41. doi: 101080/15320380903401724.Google Scholar
  52. Terkhi, M. C., Taleb, F., Gossart, P., Semmoud, A., & Addou, A. (2008). Fourier transform infrared study of mercury interaction with carboxyl groups in humic acids. Journal of Photochemistry and Photobiology A: Chemistry, 198(2), 205–214. doi: 10.1016/j.jphotochem.2008.03.018.CrossRefGoogle Scholar
  53. Tipping, E. (2002). Cation binding by humic substances. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  54. Tipping, E., Rey-Castro, C., Brayan, S., & Hamilton-Taylor, J. (2002). Al(III) and Fe(III) binding by humic substances in freshwaters, and implications for trace metal speciation. Geochimica et Cosmochimica Acta, 66(18), 3211–3224. doi: 10.1016/S0016-7037(02)00930-4.CrossRefGoogle Scholar
  55. Valenta, P. (1983). Voltammetric studies on trace metal speciation in natural waters. Part I. In G. G. Leppard (Ed.), Methods in trace speciation in surface waters (pp. 49–70). New York: Plenum.Google Scholar
  56. Van Leeuwen, H. P., Cleven, R. M. F. J., & Valenta, P. (1991). Conductometric analysis of polyelectrolytes in solution. Pure and Applied Chemistry, 63(9), 1251–126.CrossRefGoogle Scholar
  57. Witwicki, M., Jaszewski, A. R., Jezierska, J., Jerzykiewicz, M., & Jezierski, A. (2008). The pH-induced shift in the g-tensor components of semiquinone-type radicals in humic acids – DFT and EPR studies. Chemical Physics Letters, 462(6), 300–306. doi: 10.1016/j.cplett.2008.07.086.CrossRefGoogle Scholar
  58. Wu, F., Cai, Y., Evans, D., & Dillon, P. (2004). Complexation between Hg(II) and dissolved organic matter in stream waters: an application of fluorescence spectroscopy. Biogeochemistry, 71(3), 339–351. doi: 10.1007/s10533-004-0058-5.CrossRefGoogle Scholar
  59. Zhao, J., & Nelson, D. J. (2005). Fluorescence study of the interaction of Suwannee river fulvic acid with metal ions and Al3+-metal ion competition. Journal of Inorganic Biochemistry, 99(2), 383–396. doi: 10.1016/j.jinorgbio.2004.10.005.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Achour Terbouche
    • 1
    • 2
    • 3
  • Safia Djebbar
    • 2
  • Ouassini Benali-Baitich
    • 2
  • Didier Hauchard
    • 3
    • 4
  1. 1.Scientific and Technical Research Center in Physico-Chemical AnalysesAlgiersAlgeria
  2. 2.Hydrometallurgy and Molecular Inorganic Chemistry Laboratory, Faculty of ChemistryHouari Boumediene Technologies Sciences UniversityAlgiersAlgeria
  3. 3.Laboratoire Sciences Chimiques RennesUMR CNRS 6226, Ecole Nationale Supérieure de Chimie de RennesRennes Cedex 7France
  4. 4.Université Européenne de Bretagne35000RennesFrance

Personalised recommendations